Muco-adhesive clarithromycin-loaded nanostructured lipid carriers for ocular delivery: Formulation, characterization, cytotoxicity and stability
- Makoni, Pedzisai A, Khamanga, Sandile M, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Khamanga, Sandile M , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183150 , vital:43916 , xlink:href="https://doi.org/10.1016/j.jddst.2020.102171"
- Description: Topical ophthalmic formulations are the preferred approach to treat the anterior segment of the eye as it is a non-invasive therapeutic approach. The ocular bioavailability of drugs is generally limited, due to the presence of impervious anatomical barriers and low residence time and contact with the target tissue. Optimization of clarithromycin-loaded nanostructured lipid carriers using Design of Experiments was undertaken. Manufacture of nanostructured lipid carriers was achieved using hot emulsification ultrasonication. Formulation and process parameters were successfully identified following screening and subsequently optimized using Tween® 20, as a stabilizer. Muco-adhesive properties that could potentially increase ocular residence time, in vitro clarithromycin release and cytotoxicity against HeLa cells were evaluated. Short term stability studies of the optimized lipidic formulations was assessed at 4 °C and 22 °C. The optimized formulation exhibited muco-adhesive properties under stationary conditions assessed using Laser Doppler Anemometry, sustained release of API over 24 h under in vitro conditions. In vitro cytotoxicity studies revealed that the NLC were less cytotoxic to HeLa cells in comparison to pure API. The results suggest that the optimized carriers may have the potential to enhance precorneal retention, increase ocular availability and permit dose reduction or permit use of a longer dosing frequency.
- Full Text:
- Date Issued: 2021
- Authors: Makoni, Pedzisai A , Khamanga, Sandile M , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183150 , vital:43916 , xlink:href="https://doi.org/10.1016/j.jddst.2020.102171"
- Description: Topical ophthalmic formulations are the preferred approach to treat the anterior segment of the eye as it is a non-invasive therapeutic approach. The ocular bioavailability of drugs is generally limited, due to the presence of impervious anatomical barriers and low residence time and contact with the target tissue. Optimization of clarithromycin-loaded nanostructured lipid carriers using Design of Experiments was undertaken. Manufacture of nanostructured lipid carriers was achieved using hot emulsification ultrasonication. Formulation and process parameters were successfully identified following screening and subsequently optimized using Tween® 20, as a stabilizer. Muco-adhesive properties that could potentially increase ocular residence time, in vitro clarithromycin release and cytotoxicity against HeLa cells were evaluated. Short term stability studies of the optimized lipidic formulations was assessed at 4 °C and 22 °C. The optimized formulation exhibited muco-adhesive properties under stationary conditions assessed using Laser Doppler Anemometry, sustained release of API over 24 h under in vitro conditions. In vitro cytotoxicity studies revealed that the NLC were less cytotoxic to HeLa cells in comparison to pure API. The results suggest that the optimized carriers may have the potential to enhance precorneal retention, increase ocular availability and permit dose reduction or permit use of a longer dosing frequency.
- Full Text:
- Date Issued: 2021
The use of quantitative analysis and Hansen solubility parameter predictions for the selection of excipients for lipid nanocarriers to be loaded with water soluble and insoluble compounds
- Makoni, Pedzisai A, Ranchhod, Janeeta, Khamanga, Sandile M, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Ranchhod, Janeeta , Khamanga, Sandile M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183376 , vital:43981 , xlink:href="https://doi.org/10.1016/j.jsps.2020.01.010"
- Description: The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto’s molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT larger than 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers.
- Full Text:
- Date Issued: 2020
- Authors: Makoni, Pedzisai A , Ranchhod, Janeeta , Khamanga, Sandile M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183376 , vital:43981 , xlink:href="https://doi.org/10.1016/j.jsps.2020.01.010"
- Description: The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto’s molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT larger than 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers.
- Full Text:
- Date Issued: 2020
Stability indicating HPLC-ECD method for the analysis of clarithromycin in pharmaceutical dosage forms: Method scaling versus re-validation.
- Makoni, Pedzisai A, Chikukwa, Mellisa T R, Khamanga, Sandile M, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Chikukwa, Mellisa T R , Khamanga, Sandile M , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183387 , vital:43984 , xlink:href="https://doi.org/10.3390/scipharm87040031"
- Description: An isocratic high-performance liquid chromatographic method using electrochemical detection (HPLC-ECD) for the quantitation of clarithromycin (CLA) was developed using Response Surface Methodology (RSM) based on a Central Composite Design (CCD). The method was validated using International Conference on Harmonization (ICH) guidelines with an analytical run time of 20 min. Method re-validation following a change in analytical column was successful in reducing the analytical run time to 13 min, decreasing solvent consumption thus facilitating environmental and financial sustainability. The applicability of using the United States Pharmacopeia (USP) method scaling approach in place of method re-validation using a column with a different L–designation to the original analytical column, was investigated. The scaled method met all USP system suitability requirements for resolution, tailing factor and % relative standard deviation (RSD). The re-validated and scaled method was successfully used to resolve CLA from manufacturing excipients in commercially available dosage forms. Although USP method scaling is only permitted for columns within the same L-designation, these data suggest that it may also be applicable to columns of different designation.
- Full Text:
- Date Issued: 2019
- Authors: Makoni, Pedzisai A , Chikukwa, Mellisa T R , Khamanga, Sandile M , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183387 , vital:43984 , xlink:href="https://doi.org/10.3390/scipharm87040031"
- Description: An isocratic high-performance liquid chromatographic method using electrochemical detection (HPLC-ECD) for the quantitation of clarithromycin (CLA) was developed using Response Surface Methodology (RSM) based on a Central Composite Design (CCD). The method was validated using International Conference on Harmonization (ICH) guidelines with an analytical run time of 20 min. Method re-validation following a change in analytical column was successful in reducing the analytical run time to 13 min, decreasing solvent consumption thus facilitating environmental and financial sustainability. The applicability of using the United States Pharmacopeia (USP) method scaling approach in place of method re-validation using a column with a different L–designation to the original analytical column, was investigated. The scaled method met all USP system suitability requirements for resolution, tailing factor and % relative standard deviation (RSD). The re-validated and scaled method was successfully used to resolve CLA from manufacturing excipients in commercially available dosage forms. Although USP method scaling is only permitted for columns within the same L-designation, these data suggest that it may also be applicable to columns of different designation.
- Full Text:
- Date Issued: 2019
The use of experimental design for the development and validation of an HPLC-ECD method for the quantitation of efavirenz
- Makoni, Pedzisai A, Khamanga, Sandile M, Kasongo, Kasongo W, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Khamanga, Sandile M , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183556 , vital:44006 , xlink:href="https://doi.org/10.1691/ph.2018.8074"
- Description: A high performance liquid chromatography with electrochemical detection (HPLC-ECD) method for the quantitation of efavirenz (EFV) was developed, since traditional HPLC-UV methods may be inappropriate, given that EFV undergoes photolytic degradation following exposure to UV light. This work describes the use of response surface methodology (RSM) based on a central composite design (CCD) to develop a stability-indicating HPLC method with pulsed ECD in direct current (DC) mode at an applied potential difference and current of +1400 mV and 1.0 μA for the analysis of EFV. Separation of EFV and imipramine was achieved using a Nova-Pak®C18 cartridge column and a mobile phase of phosphate buffer (pH 4.5): acetonitrile (ACN) (55:45 v/v). Mobile phase pH, buffer molarity, ACN concentration and applied potential difference were investigated. The optimized method produced sharp well resolved peaks for imipramine and EFV with retention times of 3.70 and 8.89 minutes. The calibration curve was linear (R2 = 0.9979) over the range 5-70 μg/mL. Repeatability and intermediate precision ranged between 3.37 and 4.34 % RSD and 1.31 and 4.29 % RSD and accuracy between -0.80 and 4.71 % bias. The LOQ and LOD were 5.0 and 1.5 μg/mL. The method was specific for EFV and was used to analyse EFV in commercially available tablets. The HPLC-ECD method is more suitable for quantitative analysis of EFV than HPLC-UV.
- Full Text:
- Date Issued: 2018
- Authors: Makoni, Pedzisai A , Khamanga, Sandile M , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183556 , vital:44006 , xlink:href="https://doi.org/10.1691/ph.2018.8074"
- Description: A high performance liquid chromatography with electrochemical detection (HPLC-ECD) method for the quantitation of efavirenz (EFV) was developed, since traditional HPLC-UV methods may be inappropriate, given that EFV undergoes photolytic degradation following exposure to UV light. This work describes the use of response surface methodology (RSM) based on a central composite design (CCD) to develop a stability-indicating HPLC method with pulsed ECD in direct current (DC) mode at an applied potential difference and current of +1400 mV and 1.0 μA for the analysis of EFV. Separation of EFV and imipramine was achieved using a Nova-Pak®C18 cartridge column and a mobile phase of phosphate buffer (pH 4.5): acetonitrile (ACN) (55:45 v/v). Mobile phase pH, buffer molarity, ACN concentration and applied potential difference were investigated. The optimized method produced sharp well resolved peaks for imipramine and EFV with retention times of 3.70 and 8.89 minutes. The calibration curve was linear (R2 = 0.9979) over the range 5-70 μg/mL. Repeatability and intermediate precision ranged between 3.37 and 4.34 % RSD and 1.31 and 4.29 % RSD and accuracy between -0.80 and 4.71 % bias. The LOQ and LOD were 5.0 and 1.5 μg/mL. The method was specific for EFV and was used to analyse EFV in commercially available tablets. The HPLC-ECD method is more suitable for quantitative analysis of EFV than HPLC-UV.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »