Mechanisms generating biological diversity in the genus Platypleura Amyot & Serville, 1843 (Hemiptera: Cicadidae) in southern Africa: implications of a preliminary molecular phylogeny
- Villet, Martin H, Barker, Nigel P, Lunt, Nicola
- Authors: Villet, Martin H , Barker, Nigel P , Lunt, Nicola
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6554 , http://hdl.handle.net/10962/d1006012
- Description: Truly understanding biological diversity requires a move from descriptive studies to mechanistic interpretations based on comparative biology and a thorough recognition of the natural history of the focal organisms. A useful step in such comparative studies is the generation of a phylogeny, so that one can assess the phylogenetic independence of the focal taxa and trace the evolutionary significance of their characteristics. As a preliminary to such studies on the platypleurine cicada genus Platypleura, we sequenced 498 bases of the cytochrome oxidase I (COI) gene from thirteen African species. To circumvent problems with outgroup selection, we also included sequences from representatives of the platypleurine genera Brevisiana, Capcicada, Munza, Oxypleura, Severiana, and Systophlochius, all of the subtribe Platypleuriti, and two species of the genus Ugada, of the subtribe Hainanosemiiti. The resulting phylogenies support the synonymization of the monotypic genus Systophlochius with the widespread, speciose genus Platypleura; confirm the placement of Platypleura sp. 7 in that genus; and confirm the independence of Capcicada and Platypleura. Although the preliminary phylogeny lacks strong support at many nodes, it suggests that three radiations of Platypleura have occurred in southern Africa and that there was progressive southward speciation of these radiations. A novel modification of the ancestral area analysis further suggests that the group has an ancestral association with acacias but there were five independent speciation events associated with host- switching. These insights can be summarized by a general hypothesis that the mechanisms underlying platypleurine biodiversity in southern Africa involve two ancient vicariance events and subsequent speciation by vicariance, switching of plant associations, and changes of habitat preferences. We offer this example to illustrate how analysis of preliminary data can help to generate hypotheticodeductive research hypotheses, to provoke interest in testing these hypotheses, and to illustrate the utility of phylogenies beyond systematics.
- Full Text:
- Date Issued: 2004
- Authors: Villet, Martin H , Barker, Nigel P , Lunt, Nicola
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6554 , http://hdl.handle.net/10962/d1006012
- Description: Truly understanding biological diversity requires a move from descriptive studies to mechanistic interpretations based on comparative biology and a thorough recognition of the natural history of the focal organisms. A useful step in such comparative studies is the generation of a phylogeny, so that one can assess the phylogenetic independence of the focal taxa and trace the evolutionary significance of their characteristics. As a preliminary to such studies on the platypleurine cicada genus Platypleura, we sequenced 498 bases of the cytochrome oxidase I (COI) gene from thirteen African species. To circumvent problems with outgroup selection, we also included sequences from representatives of the platypleurine genera Brevisiana, Capcicada, Munza, Oxypleura, Severiana, and Systophlochius, all of the subtribe Platypleuriti, and two species of the genus Ugada, of the subtribe Hainanosemiiti. The resulting phylogenies support the synonymization of the monotypic genus Systophlochius with the widespread, speciose genus Platypleura; confirm the placement of Platypleura sp. 7 in that genus; and confirm the independence of Capcicada and Platypleura. Although the preliminary phylogeny lacks strong support at many nodes, it suggests that three radiations of Platypleura have occurred in southern Africa and that there was progressive southward speciation of these radiations. A novel modification of the ancestral area analysis further suggests that the group has an ancestral association with acacias but there were five independent speciation events associated with host- switching. These insights can be summarized by a general hypothesis that the mechanisms underlying platypleurine biodiversity in southern Africa involve two ancient vicariance events and subsequent speciation by vicariance, switching of plant associations, and changes of habitat preferences. We offer this example to illustrate how analysis of preliminary data can help to generate hypotheticodeductive research hypotheses, to provoke interest in testing these hypotheses, and to illustrate the utility of phylogenies beyond systematics.
- Full Text:
- Date Issued: 2004
Recent African derivation of Chrysomya putoria from C. chloropyga and mitochondrial DNA paraphyly of cytochrome oxidase subunit one in blowflies of forensic importance
- Wells, J D, Lunt, Nicola, Villet, Martin H
- Authors: Wells, J D , Lunt, Nicola , Villet, Martin H
- Date: 2004
- Language: English
- Type: text , Article
- Identifier: vital:6888 , http://hdl.handle.net/10962/d1011648
- Description: Chrysomya chloropyga (Wiedemann) and C. putoria (Wiedemann) (Diptera: Calliphoridae) are closely related Afrotropical blowflies that breed in carrion and latrines, reaching high density in association with humans and spreading to other continents. In some cases of human death, Chyrsomya specimens provide forensic clues. Because the immature stages of such flies are often difficult to identify taxonomically, it is useful to develop DNA-based tests for specimen identification. Therefore we attempted to distinguish between C. chloropyga and C. putoria using mitochondrial DNA (mtDNA) sequence data from a 593-bp region of the gene for cytochrome oxidase subunit one (COI). Twelve specimens from each species yielded a total of five haplotypes, none being unique to C. putoria. Therefore it was not possible to distinguish between the two species using this locus. Maximum parsimony analysis indicated paraphyletic C. chloropyga mtDNA with C. putoria nested therein. Based on these and previously published data, we infer that C. putoria diverged very recently from C. chloropyga.
- Full Text:
- Date Issued: 2004
- Authors: Wells, J D , Lunt, Nicola , Villet, Martin H
- Date: 2004
- Language: English
- Type: text , Article
- Identifier: vital:6888 , http://hdl.handle.net/10962/d1011648
- Description: Chrysomya chloropyga (Wiedemann) and C. putoria (Wiedemann) (Diptera: Calliphoridae) are closely related Afrotropical blowflies that breed in carrion and latrines, reaching high density in association with humans and spreading to other continents. In some cases of human death, Chyrsomya specimens provide forensic clues. Because the immature stages of such flies are often difficult to identify taxonomically, it is useful to develop DNA-based tests for specimen identification. Therefore we attempted to distinguish between C. chloropyga and C. putoria using mitochondrial DNA (mtDNA) sequence data from a 593-bp region of the gene for cytochrome oxidase subunit one (COI). Twelve specimens from each species yielded a total of five haplotypes, none being unique to C. putoria. Therefore it was not possible to distinguish between the two species using this locus. Maximum parsimony analysis indicated paraphyletic C. chloropyga mtDNA with C. putoria nested therein. Based on these and previously published data, we infer that C. putoria diverged very recently from C. chloropyga.
- Full Text:
- Date Issued: 2004
- «
- ‹
- 1
- ›
- »