The relationship between concurrently measured SASS (South African Scoring System) and turbidity data archived in the South African River Health Programme’s Rivers Database
- Gordon, Andrew K, Griffin, Neil J, Palmer, Carolyn G
- Authors: Gordon, Andrew K , Griffin, Neil J , Palmer, Carolyn G
- Date: 2015
- Language: English
- Type: text , Article
- Identifier: vital:7098 , http://hdl.handle.net/10962/d1015956
- Description: The need for monitoring the biological impacts of instream sediments has long been recognised, yet robust and scientifically defensible tools for doing so are still in the early stages of development because of the difficulties experienced by researchers in characterising the complicated mechanisms of biological effect elicited by sediment particles. Biological monitoring is one such tool, and this paper reports on the initial stages of a study to determine the most applicable approach for measuring the effects of instream sediments on aquatic macroinvertebrates in the South African context. In this first instance, the suitability of the rapid macroinvertebrate biomonitoring tool (the South African Scoring System) was investigated by determining the extent of the correlation between concurrently measured SASS metrics and turbidity data collected for the South African River Health Programme. All three SASS metrics – SASS score, number of taxa (NOT), and average score per taxon (ASPT) – were found to be significantly negatively correlated with turbidity, although variation in the data was high. Turbidity was found to be the major driver of change in ASPT. In contrast, electrical conductivity was the major driver of SASS scores and NOT, with turbidity a close second. When combined, electrical conductivity and turbidity accounted for 80 percent (SASS score) and 75 percent (NOT) of the variation in the regression model. Consequently, SASS metrics are a crude, but reliable, indicator of the negative biological implications of excessive instream sedimentation as measured by turbidity. A number of other potential biomonitoring approaches for detecting the impacts of fine sediment exposure are identified for further investigation: spatial analyses of macroinvertebrate assemblages; and the use of structural and functional metrics.
- Full Text:
- Date Issued: 2015
- Authors: Gordon, Andrew K , Griffin, Neil J , Palmer, Carolyn G
- Date: 2015
- Language: English
- Type: text , Article
- Identifier: vital:7098 , http://hdl.handle.net/10962/d1015956
- Description: The need for monitoring the biological impacts of instream sediments has long been recognised, yet robust and scientifically defensible tools for doing so are still in the early stages of development because of the difficulties experienced by researchers in characterising the complicated mechanisms of biological effect elicited by sediment particles. Biological monitoring is one such tool, and this paper reports on the initial stages of a study to determine the most applicable approach for measuring the effects of instream sediments on aquatic macroinvertebrates in the South African context. In this first instance, the suitability of the rapid macroinvertebrate biomonitoring tool (the South African Scoring System) was investigated by determining the extent of the correlation between concurrently measured SASS metrics and turbidity data collected for the South African River Health Programme. All three SASS metrics – SASS score, number of taxa (NOT), and average score per taxon (ASPT) – were found to be significantly negatively correlated with turbidity, although variation in the data was high. Turbidity was found to be the major driver of change in ASPT. In contrast, electrical conductivity was the major driver of SASS scores and NOT, with turbidity a close second. When combined, electrical conductivity and turbidity accounted for 80 percent (SASS score) and 75 percent (NOT) of the variation in the regression model. Consequently, SASS metrics are a crude, but reliable, indicator of the negative biological implications of excessive instream sedimentation as measured by turbidity. A number of other potential biomonitoring approaches for detecting the impacts of fine sediment exposure are identified for further investigation: spatial analyses of macroinvertebrate assemblages; and the use of structural and functional metrics.
- Full Text:
- Date Issued: 2015
Transformative processes in environmental education: A case study
- Fox, Helen E, Palmer, Carolyn G, O'Donoghue, Rob B
- Authors: Fox, Helen E , Palmer, Carolyn G , O'Donoghue, Rob B
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/387323 , vital:68225 , xlink:href="https://www.ajol.info/index.php/sajee/article/view/137680"
- Description: This paper presents a case study on the severely degraded Boksburg Lake’s (Gauteng, South Africa) social–ecological system, and on an environmental-education initiative that aimed to support the lake’s transformation with a view to its improved social and ecological well-being. In this case study, three key characteristics of the initiative which appeared to support the transformative process are discussed, namely: 1. Learning was aligned with the local social–ecological context; 2. Human-to-human and human-to-ecological connections were encouraged; and 3. The youth played a key role in initiating and effecting transformation.
- Full Text:
- Date Issued: 2015
- Authors: Fox, Helen E , Palmer, Carolyn G , O'Donoghue, Rob B
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/387323 , vital:68225 , xlink:href="https://www.ajol.info/index.php/sajee/article/view/137680"
- Description: This paper presents a case study on the severely degraded Boksburg Lake’s (Gauteng, South Africa) social–ecological system, and on an environmental-education initiative that aimed to support the lake’s transformation with a view to its improved social and ecological well-being. In this case study, three key characteristics of the initiative which appeared to support the transformative process are discussed, namely: 1. Learning was aligned with the local social–ecological context; 2. Human-to-human and human-to-ecological connections were encouraged; and 3. The youth played a key role in initiating and effecting transformation.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »