Large pollen loads of a South African asclepiad do not interfere with the foraging behaviour or efficiency of pollinating honey bees
- Authors: Coombs, Gareth , Dold, Anthony P , Brassine, Eleanor I , Peter, Craig I
- Date: 2012
- Language: English
- Type: Article
- Identifier: vital:6509 , http://hdl.handle.net/10962/d1005936
- Description: The pollen of asclepiads (Asclepiadoideae, Apocynaceae) and most orchids (Orchidaceae) are packaged as large aggregations known as pollinaria that are removed as entire units by pollinators. In some instances, individual pollinators may accumulate large loads of these pollinaria. We found that the primary pollinator of Cynanchum ellipticum (Apocynaceae-Asclepiadoideae), the honey bee Apis mellifera, accumulate very large agglomerations of pollinaria on their mouthparts when foraging on this species. We tested whether large pollinarium loads negatively affected the foraging behaviour and foraging efficiency of honey bees by slowing foraging speeds or causing honey bees to visit fewer flowers, and found no evidence to suggest that large pollinarium loads altered foraging behaviour. C. ellipticum displayed consistently high levels of pollination success and pollen transfer efficiency (PTE). This may be a consequence of efficiently loading large numbers of pollinaria onto pollinators even when primary points of attachment on pollinators are already occupied and doing so in a manner that does not impact the foraging behaviour of pollinating insects.
- Full Text:
- Date Issued: 2012
Ecology and degree of specialization of South African milkweeds with diverse pollination systems
- Authors: Coombs, Gareth
- Date: 2010
- Subjects: Milkweeds -- South Africa Milkweeds -- South Africa -- Ecology Milkweeds -- South Africa -- Pollination Allee effect Self-pollination Pollination by insects
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4189 , http://hdl.handle.net/10962/d1003758
- Description: Like orchids, the complexity of flowers found in asclepiads (Asclepiadoideae, Apocynaceae) and the fact that pollen is presented as pollinaria, offers excellent opportunities to study various aspects of plant-pollinator interactions. In this thesis I investigated two broad themes: ecological aspects of the pollination biology of hymenopteran and fly-pollinated asclepiads as well as the degree of specialization to certain pollinators in these species. Colonizing plants often reproduce through self-pollination, or have highly generalized pollination systems, or both. These characteristics facilitate establishment in small founding populations and generates the prediction that reproductive success should be independent of population size in these species. Chapter one examines the pollination biology of Gomphocarpus physocarpus, an indigenous, weedy species and investigates the relationship between reproductive success and population size. In this species, there is no evidence of an Allee effect and reproductive success is not correlated with population size. In addition G. physocarpus is not capable of self-pollination, suggesting it is completely reliant on pollinators for seed set. The lack of a relationship between pollination success and population size is therefore likely explained by the generalized wasp pollination system of this species. Several milkweeds are invasive outside of their native ranges. Invasive species either need to co-opt native pollinators in order to reproduce or reduce their reliance on pollinators through having the ability to self-pollinate. Co-opting native pollinators is expected to be easier in species that have generalized pollination systems, alternatively species with specialized flower morphologies need to rely on similar functional groups of pollinators to be present within the invaded range. Chapter two investigates the pollination biology and pollination success of the invasive milkweed, Araujia sericifera, and finds that in South Africa, this species is visited mainly by native honeybees and nocturnal moths. Moths however contribute little to pollen removal, and deposition. Based on the apparent morphological mismatch between the flower of A. sericifera and native honeybees, I propose that the native pollinators of this species are likely to be larger Hymenoptera (e.g. Bumblebees). Data from a breeding system study, indicated that this species is not capable of automatic self-pollination, but could set fruit from geitonogamous self-pollinations pointing to the importance of native pollinators for successful reproduction. The pollinaria of milkweeds can accumulate on pollinators to form pollen masses large enough to physically interfere with the foraging behaviour of pollinating insects. In chapter three I describe the pollination biology of Cynanchum ellipticum and find that this species is mainly pollinated by honeybees although this species is visited by several other members of Hymenoptera, Lepidoptera and Diptera. Due to the structure of the pollinaria, these chain together relatively efficiently and frequently form large pollinarium loads on the mouthparts of honeybees. However there is little evidence that these pollinarium loads influence the foraging times of pollinators and only a few individual honeybees exhibited longer foraging times and most honeybees were unaffected by the presence of large pollinarium loads. Within the genus Cynanchum there is large variation in the gynostegium structure that may influence the pattern of pollinarium loading on pollinators as well as pollen reception as shown in chapter three. In Chapter four, the pollination biology of Cynanchum obtusifolium is examined, and like that of C. ellipticum, this species is visited by a wide diversity of pollinators but honeybees appear to be the primary pollinators. More importantly this species is shown to be andromonoecious and produces two morphologically different flower types, that may be distinguished based on differences in the gynostegium structure. These two types of flower could mainly be distinguished by the length of the anther wings. I found that flowers with short anther wings function as male flowers by only exporting- and rarely receiving pollinia. Flowers with longer anther wings function as hermaphrodite flowers and can both export and receive pollinia. The ratio of male to hermaphrodite flowers varied at different times during the flowering season, but preliminary data suggested that this was not related to levels of pollination success. The genera Stapelia and Ceropegia are well known for their intricate floral adaptations that mimic the brood and feeding substrates of pollinating flies. Despite several studies that have documented the various adaptations to fly pollination in different species, there is a lack of natural history studies documenting different flower visitors, pollen loads and long term levels of pollination success in these species. In Chapter six I document the pollination biology of Ceropegia ampliata by documenting different pollinators and quantifying average levels of pollination success and the nectar reward. I also experimentally manipulated the trapping hairs of this species to determine whether trapping hairs influence average levels of pollen export and receipt. I show that Ceropegia ampliata is pollinated by a generalist guild of flies (mainly Tachinidae, Sarcophagidae, Muscidae and Lauxaniidae) and produces minute quantities of relatively dilute nectar as a reward. Pollination success was generally low in this species and increases periodically suggesting that the abundance of pollinators is patchy. I found that flowers with trapping hairs that had already wilted had higher levels of pollinarium removal than flowers with erect hairs, however experimentally removing the hairs had no significant effect on pollen export and receipt. In Chapter seven, I document the pollinators, pollen loads and long term levels of pollination success in Stapelia hirsuta var. bayllissi, a rare sapromyiophilous stapeliad. I find that, in contrast to C. ampliata, this species was specialized to pollination by small flies of the family Anthomyiidae. Similar to the results from Chapter seven, I find that long term levels of pollination success were typically low but could increase periodically, although such increases were generally unpredictable. There are currently very few records documenting pollinator interactions in the Periplocoideae. Many species within this subfamily exhibit open-access flowers suggestive of pollination by short-tongued insects. I investigated the pollination biology of Chlorocyathus lobulata, a rare species with a highly localized distribution. I aimed to determine the pollinators, average levels of pollination success and demography of this species in order to determine whether this rare species is suffering from the collapse of a highly specialized pollinator mutualism. I also quantified the high incidence of flower herbivory caused by larvae of the moth, Bocchoris onychinalis. I find that C. lobulata has a highly generalized fly pollination system and average levels of pollination success suggested that a large proportion of flowers had pollen removed and deposited suggesting that this species is not experiencing pollination failure. The large numbers of juveniles present also indicated that recruitment is taking place.
- Full Text:
- Date Issued: 2010
The invasive ‘mothcatcher’ (Araujia sericifera Brot.; Asclepiadoideae) co-opts native honeybees as its primary pollinator in South Africa
- Authors: Coombs, Gareth , Peter, Craig I
- Date: 2010
- Language: English
- Type: Article
- Identifier: vital:6510 , http://hdl.handle.net/10962/d1005937
- Description: Background and aims: Successful invasive plants such as Araujia sericifera usually either are capable of automatic self-pollination or maintain pollinator services by having generalized pollination systems to make use of local pollinators in the invaded range. Alternatively, plants must co-opt new pollinators with similar morphology to native pollinators or reproduce asexually. We aimed to document the pollination biology of A. sericifera in South Africa. Given the success of this species as an invader, we predicted that sexual reproduction occurs either through self-pollination or because A. sericifera has successfully co-opted native insect pollinators. Methodology: We examined the pollination biology of the South American A. sericifera in South Africa. We documented the effective pollinators including a comparison of the efficacy of nocturnal versus diurnal pollinators as well as the breeding system and long-term natural levels of the pollination success of this species. Principal results: We found that native honeybees (Apis mellifera) were the main pollinators of A. sericifera in South Africa. Visiting moths are unimportant pollinators despite being attracted by the pale colour and nocturnal scent of the flowers. Plants from the Grahamstown population were incapable of autonomous self-pollination but pollinator-mediated self-pollination does occur. However, the highest fruit initiation resulted from out-crossed pollination treatments. The high pollen transfer efficiency of this species was comparable to other hymenopteranpollinated exotic and native milkweeds, suggesting that A. sericifera maintains pollinator services at levels experienced by indigenous asclepiad species. Conclusions: Araujia sericifera reproduces successfully in South Africa due to a combined ability of this species to attract and exploit native honeybees as its pollinators and of individual plants to set fruit from pollinator-mediated self-pollination.
- Full Text:
- Date Issued: 2010
A test for Allee effects in the self-incompatible wasp-pollinated milkweed Gomphocarpus physocarpus
- Authors: Coombs, Gareth , Peter, Craig I , Johnson, Steven D
- Date: 2009
- Language: English
- Type: Article
- Identifier: vital:6511 , http://hdl.handle.net/10962/d1005938 , http://dx.doi.org/10.1111/j.1442-9993.2009.01976.x
- Description: It has been suggested that plants which are good colonizers will generally have either an ability to self-fertilize or a generalist pollination system. This prediction is based on the idea that these reproductive traits should confer resistance to Allee effects in founder populations and was tested using Gomphocarpus physocarpus (Asclepiadoideae; Apocynaceae), a species native to South Africa that is invasive in other parts of the world. We found no significant relationships between the size of G. physocarpus populations and various measures of pollination success (pollen deposition, pollen removal, and pollen transfer efficiency) and fruit set. A breeding system experiment showed that plants in a South African population are genetically self-incompatible and thus obligate outcrossers. Out-crossing is further enhanced by mechanical reconfiguration of removed pollinaria before the pollinia can be deposited. Selfpollination is reduced when such reconfiguration exceeds the average duration of pollinator visits to a plant. Observations suggest that a wide variety of wasp species in the genera Belonogaster and Polistes (Vespidae) are the primary pollinators. We conclude that efficient pollination of plants in small founding populations, resulting from their generalist wasp-pollination system, contributes in part to the colonizing success of G. physocarpus. The presence of similar wasps in other parts of the world has evidently facilitated the expansion of the range of this milkweed.
- Full Text:
- Date Issued: 2009