The use of hot and cold high pressure homogenization to enhance the loading capacity and encapsulation efficiency of nanostructured lipid carriers for the hydrophilic antiretroviral drug, didanosine for potential administration to paediatric patients
- Authors: Kasongo, Kasongo W , Müller, Rainer H , Walker, Roderick B
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184087 , vital:44170 , xlink:href="https://doi.org/10.3109/10837450.2010.542163"
- Description: A major obstacle to the application of nanostructured lipid carriers (NLCs) as carriers for hydrophilic drugs is the limited loading capacity (LC) and encapsulation efficiency (EE) of NLCs for these molecules. The purpose of this research was to design and implement a strategy to enhance the LC and EE of NLCs for the hydrophilic drug, didanosine (DDI). DDI was dispersed in Transcutol® HP and the particle size of DDI in the liquid lipid was reduced gradually using hot high pressure homogenization (HPH). The product obtained thereafter was added to Precirol® ATO 5 and the hot mixture was immediately dried using liquid nitrogen. The dried materials were then ground and passed through a 200 μm sieve and the solid lipid particles were dispersed in a surfactant solution and subsequently used to manufacture DDI-loaded NLCs using cold HPH. The LC and EE of NLCs for DDI manufactured using the new strategy were 3.39 ± 0.63% and 51.58 ± 1.31%, respectively, compared to 0.079 ± 0.001% and 32.45 ± 0.08%, respectively, obtained when DDI-loaded NLCs were produced using conventional hot HPH. The enhanced LC and EE for DDI make NLCs a potential technology for the oral administration of DDI to paediatric patients.
- Full Text:
- Date Issued: 2012
Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain
- Authors: Kasongo, Kasongo W , Jansch, Mirko , Müller, Rainer H , Walker, Roderick B
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184035 , vital:44160 , xlink:href="https://doi.org/10.3109/08982104.2010.539186"
- Description: The preferential in vitro adsorption of apolipoprotein E (Apo E) onto the surface of colloidal drug carriers may be used as a strategy to evaluate the in vivo potential for such systems to transport drugs to the brain. The aim of this research was to investigate the in vitro protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (DDI-NLCs), using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), in order to establish the potential for NLCs to deliver DDI to the brain. NLC formulations were manufactured using high-pressure homogenization using a lipid matrix consisting of a mixture of Precirol® ATO 5 and Transcutol® HP. The 2-D PAGE analysis revealed that NLCs in formulations stabilized using Solutol® HS 15 alone or with a ternary surfactant system consisting of Solutol® HS 15, Tween® 80, and Lutrol® F68, preferentially adsorbed proteins, such as Apo E. Particles stabilized with Tween® 80 and Lutrol® F68 did not adsorb Apo E in these studies, which could be related to the relatively large particle size and hence small surface area observed for these NLCs. These findings have revealed that DDI-loaded NLCs may have the potential to deliver DDI to the brain in vivo and, in addition, to Tween® 80, which has already been shown to have the ability to facilitate the targeting of colloidal drug delivery systems to the brain. Solutol® HS 15–stabilized nanoparticles may also achieve a similar purpose.
- Full Text:
- Date Issued: 2011
Formulation development and in vitro evaluation of didanosine-loaded nanostructured lipid carriers for the potential treatment of AIDS dementia complex
- Authors: Wa Kasongo, Kasongo , Shegokar, Ranjita , Müller, Rainer H , Walker, Roderick B
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184210 , vital:44190 , xlink:href="https://doi.org/10.3109/03639045.2010.516264"
- Description: The purpose of this article was to investigate the feasibility of incorporating didanosine (DDI) into nanostructured lipid carriers (NLC) for potential treatment of AIDS dementia complex. Aqueous DDI-free and DDI-loaded NLC were manufactured using hot high-pressure homogenization. The lipid matrix contained a mixture of Precirol ® ATO 5 and Transcutol ® HP. Photon correlation spectroscopy revealed that the mean particle size for all formulations was below 250 nm with narrow polydispersity indices. In addition, the d99% values for all formulations determined using laser diffractometry were below 400 nm with the span values ranging from 0.84 to 1.0. The zeta potential values ranged from −18.4 to −11.4 mV and the encapsulation efficiency of NLC for DDI ranged from 33.02% to 78.34%. These parameters remained relatively constant for all formulations tested following storage for 2 months at 25°C indicating that all the formulations were relatively stable. Differential scanning calorimetry revealed a decrease in the degree of crystallinity of NLC in all formulations developed relative to the bulk lipid material. In addition, wide-angle X-ray scattering showed that NLC in all formulations tested existed in a single β-modification form and that DDI that had been incorporated into the NLC appeared to be molecularly dispersed in the lipid matrices. Images of the NLC formulations obtained using transmission electron microscopy revealed that all formulations contained a mixture of spherical and nonspherical particles irrespective of the amount of DDI that was added during the manufacture of the formulations.
- Full Text:
- Date Issued: 2011