Evaluating the establishment of a new water hyacinth biological control agent in South Africa
- Authors: Miller, Benjamin E , Coetzee, Julie A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451399 , vital:75046 , http://dx.doi.org/10.17159/2254-8854/2023/a15613
- Description: Megamelus scutellaris Berg (Hemiptera: Delphacidae) is the most recent of nine biological control agents developed to manage invasive water hyacinth, Pontederia (= Eichhornia) crassipes Mart.(Pontederiaceae), in South Africa. More than a million M. scutellaris have been mass-reared and released since the first introduction of the agent into South Africa in 2013, successfully establishing overwintering populations at 32 sites in seven of the nine provinces. Establishment has also been recorded at seven of these sites through natural dispersal from sites where they had established. Inundative releases, where large numbers of M. scutellaris are released regularly, have resulted in excellent establishment, and caused a significant reduction in water hyacinth cover in areas where, historically, biological control seemed unlikely due to excessive eutrophication. Although M. scutellaris has established well throughout South Africa through classical biological control methods, this study also showed that inundative releases of biological control agents over multiple seasons results in the most effective control of the weed, especially at cool temperate and eutrophic sites.
- Full Text:
- Date Issued: 2023
It's a numbers game: inundative biological control of water hyacinth (Pontederia crassipes), using Megamelus scutellaris (Hemiptera: Delphacidae) yields success at a high elevation, hypertrophic reservoir in South Africa
- Authors: Coetzee, Julie A , Miller, Benjamin E , Kinsler, David , Sebola, Keneilwe , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417749 , vital:71483 , xlink:href="https://doi.org/10.1080/09583157.2022.2109594"
- Description: Classical biological control of water hyacinth in South Africa has been constrained by cool winter temperatures that limit population growth of the biological control agents, and highly eutrophic waters which enhance plant growth. However, inundative releases of the control agent, Megamelus scutellaris (Hemiptera: Delphacidae), at the Hartbeespoort Dam, South Africa, suggest that water hyacinth can be managed successfully using biological control as a standalone intervention for the first time in the absence of herbicide operations, despite eutrophication and a temperate climate. Sentinel-2 satellite images were used to measure the reduction in water hyacinth cover from over 37% to less than 6% over two consecutive years since M. scutellaris was first released on the dam in 2018, while site surveys confirmed a corresponding increase in M. scutellaris population density from fewer than 500 insects/m2 in October 2019, to more than 6000 insects/m2 by March 2020. Inundative release strategies are recommended for the control of water hyacinth in South Africa at key stages of its invasion, particularly after winter, and flooding events.
- Full Text:
- Date Issued: 2022
A review of the biocontrol programmes against aquatic weeds in South Africa
- Authors: Coetzee, Julie A , Bownes, Angela , Martin, Grant D , Miller, Benjamin E , Smith, Rosalie , Weyl, Philip S R , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406965 , vital:70326 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a18"
- Description: Biological control (biocontrol) against invasive macrophytes is one of the longest standing programmes in South Africa, initiated in the 1970s against water hyacinth, Pontederia crassipes Mart. (Pontederiaceae). Since then, 15 agent species (13 insects, one mite and one pathogen) have been released against six weeds, most of which are floating macrophytes, with excellent levels of success. The release of the water hyacinth planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae) in particular, has improved biocontrol prospects for water hyacinth since 2018. In the last decade, however, a new suite of submerged and rooted emergent invasive macrophytes has been targeted. The first release against a submerged macrophyte in South Africa, and the first release against Brazilian waterweed, Egeria densa Planch. (Hydrocharitaceae), anywhere in the world, was achieved with the release of a leafmining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae). Yellow flag, Iris pseudacorus L. (Iridaceae) and Mexican waterlily, Nymphaea mexicana Zucc. (Nymphaeaceae), have also been targeted for biocontrol for the first time worldwide, and are in the early stages of agent development. Post-release evaluations, long term monitoring and controlled experiments have highlighted the need for a more holistic approach to managing aquatic invasive plants in South Africa, whose presence is largely driven by eutrophication, resulting in regime shifts between floating and submerged invaded states.
- Full Text:
- Date Issued: 2021
The role of mass-rearing in weed biological control projects in South Africa
- Authors: Hill, Martin P , Conlong, Desmond , Zachariades, Costas , Coetzee, Julie A , Paterson, Iain D , Miller, Benjamin E , Foxcroft, Llewellyn , Van der Westhuizen, Liamé
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407094 , vital:70335 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a22"
- Description: It has been documented that the continual release of high numbers of biological control (biocontrol) agents for weeds increases the likelihood of agent establishment and has been shown to reduce the time between the first release and subsequent control of the target weed. Here we review the mass-rearing activities for weed biocontrol agents in South Africa between 2011 and 2020. Some 4.7 million individual insects from 40 species of biocontrol agent have been released on 31 weed species at over 2000 sites throughout South Africa during the last decade. These insects were produced at mass-rearing facilities at eight research institutions, five schools and 10 Non-Governmental Organizations. These mass-rearing activities have created employment for 41 fulltime, fixed contract staff, of which 11 are people living with physical disabilities. To improve the uptake of mass-rearing through community engagement, appropriate protocols are required to ensure that agents are produced in high numbers to suppress invasive alien plant populations in South Africa.
- Full Text:
- Date Issued: 2021
Chlorophyll fluorometry as a method of determining the effectiveness of a biological control agent in post-release evaluations
- Authors: Miller, Benjamin E , Coetzee, Julie A , Hill, Martin P
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417438 , vital:71453 , xlink:href="https://doi.org/10.1080/09583157.2019.1656165"
- Description: The impact of the planthopper Megamelus scutellaris, a biocontrol agent of water hyacinth in South Africa, was assessed using chlorophyll fluorometry in a greenhouse study under two different eutrophic nutrient treatments and agent densities (high and low). The results indicated that plants grown in low nutrients with high densities of M. scutellaris showed the greatest reduction in the fluorescence parameters Fv/Fm and PIabs. The successful use of chlorophyll fluorometry for the detection of subtle insect damage to water hyacinth leaves could have future application in post-release studies to measure the impact of M. scutellaris in the field.
- Full Text:
- Date Issued: 2019