The co-evolution of Africa’s eastern margin and its primate fauna: implications for hominin evolution
- Authors: Mambalu, Philasande
- Date: 2022-12
- Subjects: Port Elizabeth (South Africa) , Eastern Cape (South Africa) , South Africa
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/59755 , vital:62418
- Description: I investigated potential links between the diversification of African primate lineages and the physical evolution of the continent. I compared published phylogenetic trees based on mitochondrial and nuclear DNA for five clades: (a) Lorisoidea (galagos and pottos); (b) arboreal guenon monkeys (Cercopithecus and its allies); (c) living apes (including humans); (d) Papionini (baboons); and (e) savanna or “vervet” monkeys (Chlorocebus). I compared primate divergence dates with the ages of tectonic events, patterns of climatic change, and their palaeo-vegetational consequences. Based on present primate distributions, I estimated likely geographic locations of the divergence events. Finally, I compared the phylogenetic patterns of the primate clades with hominin evolutionary scenarios. Phylogenetic comparisons indicated three time periods when rates of speciation increased across the five primate clades: the Eocene – Oligocene transition (34 – 32 Ma); the mid-late Miocene (10 – 5 Ma); and the Pliocene – Pleistocene transition (2.7 – 2.3 Ma). Concentrated bursts of lineage splitting indicate a broadscale causal relationship between environmental change and lineage divergence. Human evolution followed similar biogeographic patterns to those of other primate clades. Tectonic events, climatic changes and palaeo-vegetational shifts are intimately connected, and have synergistic effects on biotic diversity. Tectonic events influence climatic change through their effects on oceanic circulation, planetary temperatures and rainfall patterns. Additionally, tectonic uplift and erosion may create geographic barriers to organismal dispersal across the continent, increasing the likelihood of geographic separation of populations and speciation. Recently evolved primate species show high levels of hybridisation for several generations after their initial divergence. Genus Homo generated ~10 species over 2.5 Ma. The emergence of these taxa likely involved substantial hybridisation, as demonstrated by the presence of Neanderthal genes within the H. sapiens genome. I suggest that this hybridisation contributed to the difficulties palaeoanthropologists often experience in distinguishing fossil hominin taxa. , Thesis (MSc) -- Faculty of Science, School of Environmental Sciences, 2022
- Full Text:
- Date Issued: 2022-12
- Authors: Mambalu, Philasande
- Date: 2022-12
- Subjects: Port Elizabeth (South Africa) , Eastern Cape (South Africa) , South Africa
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/59755 , vital:62418
- Description: I investigated potential links between the diversification of African primate lineages and the physical evolution of the continent. I compared published phylogenetic trees based on mitochondrial and nuclear DNA for five clades: (a) Lorisoidea (galagos and pottos); (b) arboreal guenon monkeys (Cercopithecus and its allies); (c) living apes (including humans); (d) Papionini (baboons); and (e) savanna or “vervet” monkeys (Chlorocebus). I compared primate divergence dates with the ages of tectonic events, patterns of climatic change, and their palaeo-vegetational consequences. Based on present primate distributions, I estimated likely geographic locations of the divergence events. Finally, I compared the phylogenetic patterns of the primate clades with hominin evolutionary scenarios. Phylogenetic comparisons indicated three time periods when rates of speciation increased across the five primate clades: the Eocene – Oligocene transition (34 – 32 Ma); the mid-late Miocene (10 – 5 Ma); and the Pliocene – Pleistocene transition (2.7 – 2.3 Ma). Concentrated bursts of lineage splitting indicate a broadscale causal relationship between environmental change and lineage divergence. Human evolution followed similar biogeographic patterns to those of other primate clades. Tectonic events, climatic changes and palaeo-vegetational shifts are intimately connected, and have synergistic effects on biotic diversity. Tectonic events influence climatic change through their effects on oceanic circulation, planetary temperatures and rainfall patterns. Additionally, tectonic uplift and erosion may create geographic barriers to organismal dispersal across the continent, increasing the likelihood of geographic separation of populations and speciation. Recently evolved primate species show high levels of hybridisation for several generations after their initial divergence. Genus Homo generated ~10 species over 2.5 Ma. The emergence of these taxa likely involved substantial hybridisation, as demonstrated by the presence of Neanderthal genes within the H. sapiens genome. I suggest that this hybridisation contributed to the difficulties palaeoanthropologists often experience in distinguishing fossil hominin taxa. , Thesis (MSc) -- Faculty of Science, School of Environmental Sciences, 2022
- Full Text:
- Date Issued: 2022-12
Effect of fire severity on Afrotemperate forest tree survival
- Authors: Giddey, Brandon Louis
- Date: 2022-04
- Subjects: Port Elizabeth (South Africa) , Eastern Cape (South Africa) , South Africa
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/55385 , vital:51988
- Description: Weather patterns have changed globally with increased fire danger weather conditions, along with poor management and fire suppression, likely contributing to the increase in prevalence of large wildfires. Ecosystems such as temperate broadleaved forests, where fire is limited by climatic conditions, are particularly at risk of altered fire regimes related to climate change. It is thus important to monitor the effects of fire in these ecosystems. Satellite remote sensing is a cost-effective way to assess spatial variability of fire effects on a landscape scale and has become an increasingly used tool for studying fire severity. In the southern Cape of South Africa during October-November 2018, a large wildfire burnt patches of Southern Cape Afrotemperate Forest (hereafter ‘Afrotemperate forest’). This provided an opportunity to investigate the accuracy of a satellite index for fire severity and the effect of fire on Afrotemperate forest survival. The first objective was to verify through field observations the accuracy of the differenced Normalised Burn Ratio (dNBR) as an index of fire severity derived from Sentinel 2 images in Afrotemperate forest. The second objective was to investigate the effect of fire severity and tree size on the post-fire survival of Afrotemperate forest tree species. For the first objective, stem fire severity, estimated from observed damage to the main stem, was recorded for 1 648 trees in 87 plots and linear regression used to test whether the observed measure of fire severity was related to dNBR. For the second objective, stem fire severity and tree survival 19-24 months post-fire were recorded for 40 species and 1 378 trees in 88 plots. Trees were considered to have survived if they resprouted from the main stem or had green foliage in the canopy. The survival response was assessed in relation to stem fire severity and tree size for all trees collectively and for 10 species (with sample size > 40) individually, using logistic regression. A strong linear relationship between dNBR and stem fire severity (r2 = 0.69, p < 0.001) confirmed the accuracy of dNBR as a measure of fire severity in Afrotemperate forest. In the fire investigated, 4 628 ha of Afrotemperate forest burnt of which 67% burnt at low severity, 21% at medium severity and 12% at high severity. The dNBR values associated with fire severity categories were comparable between Afrotemperate and North American forests, suggesting that dNBR values are relatively standard across forest types. Information on the distribution of fire severity facilitates investigation of further questions regarding past and future fire regimes and the fire ecology of Afrotemperate forest. The post-fire survival rate of Afrotemperate forest trees was 45% which is comparable to that in coniferous forests of North America but lower than that in temperate forests of Australia and Portugal and the neighbouring dune thicket which shares several species with Afrotemperate forest. Fire severity had a significant negative effect on survival and tree size a significant positive effect. Total variance explained by the model (for species collectively) was 40.8%, of which fire severity and tree size combined explained 13.2%, and species as random factor, 27.6%. Respective tree species showed differential survival responses – four species showed high survival (> 60% of individuals), while five species showed low survival (< 40%). This study was the first post-fire assessment of the resprouting ability of Afrotemperate forest trees and a third of the trees surveyed (for species collectively) resprouted from the stem. This suggested that resprouting from the stem is a primary means of post-fire recovery in Afrotemperate forest trees, in contrast with previous assertions that several common canopy species, including Podocarpus latifolius, Afrocarpus falcatus, Scutia myrtina, Scolopia mundii and Rapanea melanophloeos, are unable to resprout. Varying resilience to fire among species supports previous suggestions that fire affects species’ composition and diversity in these forests and calls for careful management of fire regimes in the face of global change. , Thesis (MSc) -- Faculty of Science, School of Natural Resource Management, 2022
- Full Text: false
- Date Issued: 2022-04
- Authors: Giddey, Brandon Louis
- Date: 2022-04
- Subjects: Port Elizabeth (South Africa) , Eastern Cape (South Africa) , South Africa
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/55385 , vital:51988
- Description: Weather patterns have changed globally with increased fire danger weather conditions, along with poor management and fire suppression, likely contributing to the increase in prevalence of large wildfires. Ecosystems such as temperate broadleaved forests, where fire is limited by climatic conditions, are particularly at risk of altered fire regimes related to climate change. It is thus important to monitor the effects of fire in these ecosystems. Satellite remote sensing is a cost-effective way to assess spatial variability of fire effects on a landscape scale and has become an increasingly used tool for studying fire severity. In the southern Cape of South Africa during October-November 2018, a large wildfire burnt patches of Southern Cape Afrotemperate Forest (hereafter ‘Afrotemperate forest’). This provided an opportunity to investigate the accuracy of a satellite index for fire severity and the effect of fire on Afrotemperate forest survival. The first objective was to verify through field observations the accuracy of the differenced Normalised Burn Ratio (dNBR) as an index of fire severity derived from Sentinel 2 images in Afrotemperate forest. The second objective was to investigate the effect of fire severity and tree size on the post-fire survival of Afrotemperate forest tree species. For the first objective, stem fire severity, estimated from observed damage to the main stem, was recorded for 1 648 trees in 87 plots and linear regression used to test whether the observed measure of fire severity was related to dNBR. For the second objective, stem fire severity and tree survival 19-24 months post-fire were recorded for 40 species and 1 378 trees in 88 plots. Trees were considered to have survived if they resprouted from the main stem or had green foliage in the canopy. The survival response was assessed in relation to stem fire severity and tree size for all trees collectively and for 10 species (with sample size > 40) individually, using logistic regression. A strong linear relationship between dNBR and stem fire severity (r2 = 0.69, p < 0.001) confirmed the accuracy of dNBR as a measure of fire severity in Afrotemperate forest. In the fire investigated, 4 628 ha of Afrotemperate forest burnt of which 67% burnt at low severity, 21% at medium severity and 12% at high severity. The dNBR values associated with fire severity categories were comparable between Afrotemperate and North American forests, suggesting that dNBR values are relatively standard across forest types. Information on the distribution of fire severity facilitates investigation of further questions regarding past and future fire regimes and the fire ecology of Afrotemperate forest. The post-fire survival rate of Afrotemperate forest trees was 45% which is comparable to that in coniferous forests of North America but lower than that in temperate forests of Australia and Portugal and the neighbouring dune thicket which shares several species with Afrotemperate forest. Fire severity had a significant negative effect on survival and tree size a significant positive effect. Total variance explained by the model (for species collectively) was 40.8%, of which fire severity and tree size combined explained 13.2%, and species as random factor, 27.6%. Respective tree species showed differential survival responses – four species showed high survival (> 60% of individuals), while five species showed low survival (< 40%). This study was the first post-fire assessment of the resprouting ability of Afrotemperate forest trees and a third of the trees surveyed (for species collectively) resprouted from the stem. This suggested that resprouting from the stem is a primary means of post-fire recovery in Afrotemperate forest trees, in contrast with previous assertions that several common canopy species, including Podocarpus latifolius, Afrocarpus falcatus, Scutia myrtina, Scolopia mundii and Rapanea melanophloeos, are unable to resprout. Varying resilience to fire among species supports previous suggestions that fire affects species’ composition and diversity in these forests and calls for careful management of fire regimes in the face of global change. , Thesis (MSc) -- Faculty of Science, School of Natural Resource Management, 2022
- Full Text: false
- Date Issued: 2022-04
- «
- ‹
- 1
- ›
- »