Ecological impacts of small dams on South African rivers Part 1: Drivers of change–water quantity and quality
- Mantel, Sukhmani K, Hughes, Denis A, Muller, Nikite W J
- Authors: Mantel, Sukhmani K , Hughes, Denis A , Muller, Nikite W J
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438099 , vital:73435 , ISBN 1816-7950 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2398.pdf
- Description: Impacts of large dams are well-known and quantifiable, while small dams have generally been perceived as benign, both socially and envi-ronmentally. The present study quantifies the cumulative impacts of small dams on the water quality (physico-chemistry and invertebrate biotic indices) and quantity (discharge) of downstream rivers in 2 South African regions. The information from 2 South African national data-bases was used for evaluating the cumulative impacts on water quality and quantity. Physico-chemistry and biological data were obtained from the River Health Programme, and discharge data at stream flow gauges was obtained from the Hydrological Information System. Multivariate analyses were conducted to establish broad patterns for cumulative impacts of small dams across the 2 regions–Western Cape (winter rain-fall, temperate, south-western coast) and Mpumalanga (summer rain-fall, tropical, eastern coast). Multivariate analyses found that the chang-es in macroinvertebrate indices and the stream’s physico-chemistry were more strongly correlated with the density of small dams in the catchment (as a measure of cumulative impact potential) relative to the storage capacity of large dams. T-tests on the data, not including sam-ples with upstream large dams, indicated that the high density of small dams significantly reduced low flows and increased certain physico-chemistry variables (particularly total dissolved salts) in both the re-gions, along with associated significant reductions in a macroinverte-brate index (SASS4 average score per taxon). Regional differences were apparent in the results for discharge reductions and the macroin-vertebrate index. The results suggest that the cumulative effect of a high number of small dams is impacting the quality and quantity of wa-ters in South African rivers and that these impacts need to be systemat-ically incorporated into the monitoring protocol of the environmental wa-ter requirements.
- Full Text:
- Date Issued: 2010
- Authors: Mantel, Sukhmani K , Hughes, Denis A , Muller, Nikite W J
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438099 , vital:73435 , ISBN 1816-7950 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2398.pdf
- Description: Impacts of large dams are well-known and quantifiable, while small dams have generally been perceived as benign, both socially and envi-ronmentally. The present study quantifies the cumulative impacts of small dams on the water quality (physico-chemistry and invertebrate biotic indices) and quantity (discharge) of downstream rivers in 2 South African regions. The information from 2 South African national data-bases was used for evaluating the cumulative impacts on water quality and quantity. Physico-chemistry and biological data were obtained from the River Health Programme, and discharge data at stream flow gauges was obtained from the Hydrological Information System. Multivariate analyses were conducted to establish broad patterns for cumulative impacts of small dams across the 2 regions–Western Cape (winter rain-fall, temperate, south-western coast) and Mpumalanga (summer rain-fall, tropical, eastern coast). Multivariate analyses found that the chang-es in macroinvertebrate indices and the stream’s physico-chemistry were more strongly correlated with the density of small dams in the catchment (as a measure of cumulative impact potential) relative to the storage capacity of large dams. T-tests on the data, not including sam-ples with upstream large dams, indicated that the high density of small dams significantly reduced low flows and increased certain physico-chemistry variables (particularly total dissolved salts) in both the re-gions, along with associated significant reductions in a macroinverte-brate index (SASS4 average score per taxon). Regional differences were apparent in the results for discharge reductions and the macroin-vertebrate index. The results suggest that the cumulative effect of a high number of small dams is impacting the quality and quantity of wa-ters in South African rivers and that these impacts need to be systemat-ically incorporated into the monitoring protocol of the environmental wa-ter requirements.
- Full Text:
- Date Issued: 2010
Ecological impacts of small dams on South African rivers Part 2: Biotic response – abundance and composition of macroinvertebrate communities
- Mantel, Sukhmani K, Muller, Nikite W J, Hughes, Denis A
- Authors: Mantel, Sukhmani K , Muller, Nikite W J , Hughes, Denis A
- Date: 2010
- Language: English
- Type: text , Article
- Identifier: vital:7095 , http://hdl.handle.net/10962/d1012437
- Description: This paper investigates the cumulative impacts of small dams on invertebrate communities in 2 regions of South Africa – the Western Cape and Mpumalanga. Previous research found reduced discharge, increased total dissolved salts, and a decrease in average score per taxon (ASPT; collected using SASS4 methods) at sites with high density of small dams in their catchment. These changes in ASPT are investigated using the invertebrate abundance data available in the River Health Programme. Multivariate analyses found differences in invertebrate communities in rivers with high densities of small dams in their catchment in foothill-gravel streams (in both Western Cape and Mpumalanga) and in foothill-cobble streams (in Western Cape only). Opportunistic taxa that are tolerant of pollution, and capable of exploiting various habitats, and those that prefer slower currents increased in numbers, while other taxa that are sensitive to pollution and disturbance declined in numbers. Some regional differences were noted possibly reflecting climatic differences between the regions. Since the results of this study are correlative, it highlights the need for a systematic (by sites and seasons) and detailed (at species level) collection of data to verify the results of cumulative effects of small dams. This can further the development of a framework for small-dam construction and management that will limit their impact on river catchments.
- Full Text:
- Date Issued: 2010
- Authors: Mantel, Sukhmani K , Muller, Nikite W J , Hughes, Denis A
- Date: 2010
- Language: English
- Type: text , Article
- Identifier: vital:7095 , http://hdl.handle.net/10962/d1012437
- Description: This paper investigates the cumulative impacts of small dams on invertebrate communities in 2 regions of South Africa – the Western Cape and Mpumalanga. Previous research found reduced discharge, increased total dissolved salts, and a decrease in average score per taxon (ASPT; collected using SASS4 methods) at sites with high density of small dams in their catchment. These changes in ASPT are investigated using the invertebrate abundance data available in the River Health Programme. Multivariate analyses found differences in invertebrate communities in rivers with high densities of small dams in their catchment in foothill-gravel streams (in both Western Cape and Mpumalanga) and in foothill-cobble streams (in Western Cape only). Opportunistic taxa that are tolerant of pollution, and capable of exploiting various habitats, and those that prefer slower currents increased in numbers, while other taxa that are sensitive to pollution and disturbance declined in numbers. Some regional differences were noted possibly reflecting climatic differences between the regions. Since the results of this study are correlative, it highlights the need for a systematic (by sites and seasons) and detailed (at species level) collection of data to verify the results of cumulative effects of small dams. This can further the development of a framework for small-dam construction and management that will limit their impact on river catchments.
- Full Text:
- Date Issued: 2010
Ecological impacts of small dams on South African rivers Part 2: Biotic response–abundance and composition of macroinvertebrate communities
- Mantel, Sukhmani K, Muller, Nikite W J, Hughes, Denis A
- Authors: Mantel, Sukhmani K , Muller, Nikite W J , Hughes, Denis A
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438087 , vital:73434 , ISBN 1816-7950 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2354.pdf
- Description: This paper investigates the cumulative impacts of small dams on inver-tebrate communities in 2 regions of South Africa–the Western Cape and Mpumalanga. Previous research found reduced discharge, in-creased total dissolved salts, and a decrease in average score per tax-on (ASPT; collected using SASS4 methods) at sites with high density of small dams in their catchment. These changes in ASPT are investigat-ed using the invertebrate abundance data available in the River Health Programme. Multivariate analyses found differences in invertebrate communities in rivers with high densities of small dams in their catch-ment in foothill-gravel streams (in both Western Cape and Mpuma-langa) and in foothill-cobble streams (in Western Cape only). Opportun-istic taxa that are tolerant of pollution, and capable of exploiting various habitats, and those that prefer slower currents increased in numbers, while other taxa that are sensitive to pollution and disturbance declined in numbers. Some regional differences were noted possibly reflecting climatic differences between the regions. Since the results of this study are correlative, it highlights the need for a systematic (by sites and sea-sons) and detailed (at species level) collection of data to verify the re-sults of cumulative effects of small dams. This can further the devel-opment of a framework for small-dam construction and management that will limit their impact on river catchments.
- Full Text:
- Date Issued: 2010
- Authors: Mantel, Sukhmani K , Muller, Nikite W J , Hughes, Denis A
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438087 , vital:73434 , ISBN 1816-7950 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2354.pdf
- Description: This paper investigates the cumulative impacts of small dams on inver-tebrate communities in 2 regions of South Africa–the Western Cape and Mpumalanga. Previous research found reduced discharge, in-creased total dissolved salts, and a decrease in average score per tax-on (ASPT; collected using SASS4 methods) at sites with high density of small dams in their catchment. These changes in ASPT are investigat-ed using the invertebrate abundance data available in the River Health Programme. Multivariate analyses found differences in invertebrate communities in rivers with high densities of small dams in their catch-ment in foothill-gravel streams (in both Western Cape and Mpuma-langa) and in foothill-cobble streams (in Western Cape only). Opportun-istic taxa that are tolerant of pollution, and capable of exploiting various habitats, and those that prefer slower currents increased in numbers, while other taxa that are sensitive to pollution and disturbance declined in numbers. Some regional differences were noted possibly reflecting climatic differences between the regions. Since the results of this study are correlative, it highlights the need for a systematic (by sites and sea-sons) and detailed (at species level) collection of data to verify the re-sults of cumulative effects of small dams. This can further the devel-opment of a framework for small-dam construction and management that will limit their impact on river catchments.
- Full Text:
- Date Issued: 2010
Larval development of the carrion-breeding flesh fly, Sarcophaga (Liosarcophaga) tibialis Macquart (Diptera: Sarcophagidae), at constant temperatures
- Villet, Martin H, MacKenzie, Bernard L, Muller, Nikite W J
- Authors: Villet, Martin H , MacKenzie, Bernard L , Muller, Nikite W J
- Date: 2006
- Language: English
- Type: text , Article
- Identifier: vital:7091 , http://hdl.handle.net/10962/d1012422
- Description: Larvae of Sarcophaga (Liosarcophaga) tibialis Macquart were raised on chicken liver under six different constant temperatures. Maximum survival indicated an optimal developmental temperature of near 20°C, while trends in mortality, larval length and larval mass implied that the thermal window for successful development lay between 15°C and 30°C. Using a recently described method to estimate a simple thermal summation model, it was found that the timing of the end of the feeding phase could be estimated by a developmental zero (D0) of 5.2°C (S.E. = 1.21) and a thermal summation constant (K) of 106.4 d°C (S.E. = 8.31) and of the end of the wandering phase by D0 = 4.1°C (S.E. = 0.39) and K = 126.7 d°C (S.E. = 3.28). Published development times at constant temperatures were compiled for 19 other species of flesh flies, and the developmental constants were calculated for six species for which sufficient data were accumulated.
- Full Text:
- Date Issued: 2006
- Authors: Villet, Martin H , MacKenzie, Bernard L , Muller, Nikite W J
- Date: 2006
- Language: English
- Type: text , Article
- Identifier: vital:7091 , http://hdl.handle.net/10962/d1012422
- Description: Larvae of Sarcophaga (Liosarcophaga) tibialis Macquart were raised on chicken liver under six different constant temperatures. Maximum survival indicated an optimal developmental temperature of near 20°C, while trends in mortality, larval length and larval mass implied that the thermal window for successful development lay between 15°C and 30°C. Using a recently described method to estimate a simple thermal summation model, it was found that the timing of the end of the feeding phase could be estimated by a developmental zero (D0) of 5.2°C (S.E. = 1.21) and a thermal summation constant (K) of 106.4 d°C (S.E. = 8.31) and of the end of the wandering phase by D0 = 4.1°C (S.E. = 0.39) and K = 126.7 d°C (S.E. = 3.28). Published development times at constant temperatures were compiled for 19 other species of flesh flies, and the developmental constants were calculated for six species for which sufficient data were accumulated.
- Full Text:
- Date Issued: 2006
The development of water quality methods within ecological Reserve assessments, and links to environmental flows
- Palmer, Carolyn G, Rossouw, N, Muller, Nikite W J, Scherman, Patricia A
- Authors: Palmer, Carolyn G , Rossouw, N , Muller, Nikite W J , Scherman, Patricia A
- Date: 2005
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438033 , vital:73430 , ISBN 0378-4738 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/WaterSA_2005_02_1634.pdf
- Description: In the South African National Water Act (NWA, No 36 of 1998), the eco-logical Reserve is defined as the quality and quantity of water required to ensure appropriate protection of water resources, so as to secure ecologically sustainable development and use. Aquatic ecosystems are recognised as the core location of water resources, and although con-siderable progress has been made in developing methods for quantify-ing environmental flow requirements, this paper describes and discuss-es the first agreed method for quantifying environmental water quality requirements in an ecological Reserve assessment. Integration of flow and water quality is emphasised, and is based on the philosophy that environmental flows should be motivated to provide ecologically im-portant flow-related habitat, or geomorphological function, but should not be motivated to solve water quality problems by dilution. Water qual-ity is multivariate, and not all variables can be considered in an ecologi-cal Reserve assessment, but core water quality variables include: sys-tem variables (salts, dissolved oxygen, turbidity, temperature), nutrients (phosphate, nitrite, nitrate) and toxic substances (those listed in the South African Water Quality Guidelines for Aquatic Ecosystems, includ-ing toxic metal ions, toxic organic substances, and/or substances from a chemical inventory of an effluent or discharge). In addition, biological indicator data (eg SASS data), chlorophyll-a (eg phytoplankton and pe-riphyton data) and toxicity test data may be used. For each variable, a concentration range or response is linked to a class within a water re-source classification system, where classes range from minimally to severely modified.
- Full Text:
- Date Issued: 2005
- Authors: Palmer, Carolyn G , Rossouw, N , Muller, Nikite W J , Scherman, Patricia A
- Date: 2005
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438033 , vital:73430 , ISBN 0378-4738 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/WaterSA_2005_02_1634.pdf
- Description: In the South African National Water Act (NWA, No 36 of 1998), the eco-logical Reserve is defined as the quality and quantity of water required to ensure appropriate protection of water resources, so as to secure ecologically sustainable development and use. Aquatic ecosystems are recognised as the core location of water resources, and although con-siderable progress has been made in developing methods for quantify-ing environmental flow requirements, this paper describes and discuss-es the first agreed method for quantifying environmental water quality requirements in an ecological Reserve assessment. Integration of flow and water quality is emphasised, and is based on the philosophy that environmental flows should be motivated to provide ecologically im-portant flow-related habitat, or geomorphological function, but should not be motivated to solve water quality problems by dilution. Water qual-ity is multivariate, and not all variables can be considered in an ecologi-cal Reserve assessment, but core water quality variables include: sys-tem variables (salts, dissolved oxygen, turbidity, temperature), nutrients (phosphate, nitrite, nitrate) and toxic substances (those listed in the South African Water Quality Guidelines for Aquatic Ecosystems, includ-ing toxic metal ions, toxic organic substances, and/or substances from a chemical inventory of an effluent or discharge). In addition, biological indicator data (eg SASS data), chlorophyll-a (eg phytoplankton and pe-riphyton data) and toxicity test data may be used. For each variable, a concentration range or response is linked to a class within a water re-source classification system, where classes range from minimally to severely modified.
- Full Text:
- Date Issued: 2005
- «
- ‹
- 1
- ›
- »