Synthetic, characterization and cytotoxic studies of ruthenium complexes with Schiff bases encompassing biologically relevant moieties:
- Maikoo, Sanam, Dingle, Laura M K, Chakraborty, Abir, Xulu, Bheki, Edkins, Adrienne L, Booysen, Irvin N
- Authors: Maikoo, Sanam , Dingle, Laura M K , Chakraborty, Abir , Xulu, Bheki , Edkins, Adrienne L , Booysen, Irvin N
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165429 , vital:41243 , https://doi.org/10.1016/j.poly.2020.114569
- Description: This research study describes the formation and characterization of novel paramagnetic ruthenium complexes, cis-Cl, trans-P-[RuIIICl2(carboim)(PPh3)2] with bidentate chelating carbohydrazide Schiff bases (carboim = bpc for 1, ttc for 2 and tpc for 3). These metal complexes were synthesized by the equimolar coordination reactions of trans-[RuCl2(PPh3)2] with N-[1,3-benzothiazole-2-ylmethylidene]pyridine-2-carbohydrazide (Hbpc), N-((uracil-5-yl)methylene)thiophene-2-carbohydrazide (Httc) and N-[(uracil-5-yl)methylidene]pyridine-2-carbohydrazide (Htpc), respectively. Physicochemical techniques including nuclear magnetic resonance-, electron-spin resonance- and infrared spectroscopy, UV–Vis spectrophotometry, voltammetry as well as molar conductivity measurements provided definitive determinations of the respective ruthenium compounds’ structures.
- Full Text:
- Date Issued: 2020
- Authors: Maikoo, Sanam , Dingle, Laura M K , Chakraborty, Abir , Xulu, Bheki , Edkins, Adrienne L , Booysen, Irvin N
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165429 , vital:41243 , https://doi.org/10.1016/j.poly.2020.114569
- Description: This research study describes the formation and characterization of novel paramagnetic ruthenium complexes, cis-Cl, trans-P-[RuIIICl2(carboim)(PPh3)2] with bidentate chelating carbohydrazide Schiff bases (carboim = bpc for 1, ttc for 2 and tpc for 3). These metal complexes were synthesized by the equimolar coordination reactions of trans-[RuCl2(PPh3)2] with N-[1,3-benzothiazole-2-ylmethylidene]pyridine-2-carbohydrazide (Hbpc), N-((uracil-5-yl)methylene)thiophene-2-carbohydrazide (Httc) and N-[(uracil-5-yl)methylidene]pyridine-2-carbohydrazide (Htpc), respectively. Physicochemical techniques including nuclear magnetic resonance-, electron-spin resonance- and infrared spectroscopy, UV–Vis spectrophotometry, voltammetry as well as molar conductivity measurements provided definitive determinations of the respective ruthenium compounds’ structures.
- Full Text:
- Date Issued: 2020
HOP expression is regulated by p53 and RAS and characteristic of a cancer gene signature
- Mattison, Stacey A, Blatch, Gregory L, Edkins, Adrienne L
- Authors: Mattison, Stacey A , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66278 , vital:28928 , https://doi.org/10.1007/s12192-016-0755-8
- Description: publisher version , The Hsp70/Hsp90 organising protein (HOP) is a co-chaperone essential for client protein transfer from Hsp70 to Hsp90 within the Hsp90 chaperone machine. Although HOP is upregulated in various cancers, there is limited information from in vitro studies on how HOP expression is regulated in cancer. The main objective of this study was to identify the HOP promoter and investigate its activity in cancerous cells. Bioinformatic analysis of the -2500 to +16 bp region of the HOP gene identified a large CpG island and a range of putative cis-elements. Many of the cis-elements were potentially bound by transcription factors which are activated by oncogenic pathways. Luciferase reporter assays demonstrated that the upstream region of the HOP gene contains an active promoter in vitro. Truncation of this region suggested that the core HOP promoter region was -855 to +16 bp. HOP promoter activity was highest in Hs578T, HEK293T and SV40- transformed MEF1 cell lines which expressed mutant or inactive p53. In a mutant p53 background, expression of wild-type p53 led to a reduction in promoter activity, while inhibition of wild-type p53 in HeLa cells increased HOP promoter activity. Additionally, in Hs578T and HEK293T cell lines containing inactive p53, expression of HRAS increased HOP promoter activity. However, HRAS activation of the HOP promoter was inhibited by p53 overexpression. These findings suggest for the first time that HOP expression in cancer may be regulated by both RAS activation and p53 inhibition. Taken together, these data suggest that HOP may be part of the cancer gene signature induced by a combination of mutant p53 and mutated RAS that is associated with cellular transformation.
- Full Text: false
- Date Issued: 2018
- Authors: Mattison, Stacey A , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66278 , vital:28928 , https://doi.org/10.1007/s12192-016-0755-8
- Description: publisher version , The Hsp70/Hsp90 organising protein (HOP) is a co-chaperone essential for client protein transfer from Hsp70 to Hsp90 within the Hsp90 chaperone machine. Although HOP is upregulated in various cancers, there is limited information from in vitro studies on how HOP expression is regulated in cancer. The main objective of this study was to identify the HOP promoter and investigate its activity in cancerous cells. Bioinformatic analysis of the -2500 to +16 bp region of the HOP gene identified a large CpG island and a range of putative cis-elements. Many of the cis-elements were potentially bound by transcription factors which are activated by oncogenic pathways. Luciferase reporter assays demonstrated that the upstream region of the HOP gene contains an active promoter in vitro. Truncation of this region suggested that the core HOP promoter region was -855 to +16 bp. HOP promoter activity was highest in Hs578T, HEK293T and SV40- transformed MEF1 cell lines which expressed mutant or inactive p53. In a mutant p53 background, expression of wild-type p53 led to a reduction in promoter activity, while inhibition of wild-type p53 in HeLa cells increased HOP promoter activity. Additionally, in Hs578T and HEK293T cell lines containing inactive p53, expression of HRAS increased HOP promoter activity. However, HRAS activation of the HOP promoter was inhibited by p53 overexpression. These findings suggest for the first time that HOP expression in cancer may be regulated by both RAS activation and p53 inhibition. Taken together, these data suggest that HOP may be part of the cancer gene signature induced by a combination of mutant p53 and mutated RAS that is associated with cellular transformation.
- Full Text: false
- Date Issued: 2018
Differential regulation of monocyte cytokine release by αV and β2 integrins that bind CD23:
- Edkins, Adrienne L, Borland, Gillian, Acharya, Mridu, Cogdell, Richard, Ozanne, Bradford W, Cushley, William
- Authors: Edkins, Adrienne L , Borland, Gillian , Acharya, Mridu , Cogdell, Richard , Ozanne, Bradford W , Cushley, William
- Date: 2012
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165153 , vital:41213 , DOI: 10.1111/j.1365-2567.2012.03576.x
- Description: The human soluble CD23 (sCD23) protein displays highly pleiotropic cytokine‐like activity. Monocytic cells express the sCD23‐binding integrins αVβ3, αVβ5, αMβ2 and αXβ2, but it is unclear which of these four integrins most acutely regulates sCD23‐driven cytokine release. The hypothesis that ligation of different sCD23‐binding integrins promoted release of distinct subsets of cytokines was tested. Lipopolysaccharide (LPS) and sCD23 promoted release of distinct groups of cytokines from the THP‐1 model cell line.
- Full Text:
- Date Issued: 2012
- Authors: Edkins, Adrienne L , Borland, Gillian , Acharya, Mridu , Cogdell, Richard , Ozanne, Bradford W , Cushley, William
- Date: 2012
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165153 , vital:41213 , DOI: 10.1111/j.1365-2567.2012.03576.x
- Description: The human soluble CD23 (sCD23) protein displays highly pleiotropic cytokine‐like activity. Monocytic cells express the sCD23‐binding integrins αVβ3, αVβ5, αMβ2 and αXβ2, but it is unclear which of these four integrins most acutely regulates sCD23‐driven cytokine release. The hypothesis that ligation of different sCD23‐binding integrins promoted release of distinct subsets of cytokines was tested. Lipopolysaccharide (LPS) and sCD23 promoted release of distinct groups of cytokines from the THP‐1 model cell line.
- Full Text:
- Date Issued: 2012
Theiler’s murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin:
- Mutsvunguma, Lorraine Z, Moetlhoa, Boitumelo, Edkins, Adrienne L, Luke, Garry A, Blatch, Gregory L, Knox, Caroline M
- Authors: Mutsvunguma, Lorraine Z , Moetlhoa, Boitumelo , Edkins, Adrienne L , Luke, Garry A , Blatch, Gregory L , Knox, Caroline M
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165085 , vital:41207 , DOI: 10.1007/s12192-011-0262-x
- Description: Theiler’s murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex.
- Full Text:
- Date Issued: 2011
- Authors: Mutsvunguma, Lorraine Z , Moetlhoa, Boitumelo , Edkins, Adrienne L , Luke, Garry A , Blatch, Gregory L , Knox, Caroline M
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165085 , vital:41207 , DOI: 10.1007/s12192-011-0262-x
- Description: Theiler’s murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex.
- Full Text:
- Date Issued: 2011
- «
- ‹
- 1
- ›
- »