The complex immunological and inflammatory network of adipose tissue in obesity
- Apostolopoulos, Vasso, De Courten, Maximilian P J, Stojanovska, Lily, Blatch, Gregory L, Tangalakis, Kathy, De Courten, Barbora
- Authors: Apostolopoulos, Vasso , De Courten, Maximilian P J , Stojanovska, Lily , Blatch, Gregory L , Tangalakis, Kathy , De Courten, Barbora
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66120 , vital:28905 , https://doi.org/10.1002/mnfr.201500272
- Description: publisher version , A number of approaches have been utilized in the prevention, management, and treatment of obesity, including, surgery, medication, diet, exercise, and overall lifestyle changes. Despite these interventions, the prevalence of obesity and the various disorders related to it is growing. In obesity, there is a constant state of chronic low‐grade inflammation which is characterized by activation and infiltration of pro‐inflammatory immune cells and a dysregulated production of high levels of pro‐inflammatory cytokines. This pro‐inflammatory milieu contributes to insulin resistance, type‐2 diabetes, cardiovascular disease, and other related co‐morbidities. The roles of the innate (macrophages, neutrophils, eosinophils, mast cells, NK cells, MAIT cells) and the adaptive (CD4 T cells, CD8 T cells, regulatory T cells, and B cells) immune responses and the roles of adipokines and cytokines in adipose tissue inflammation and obesity are discussed. An understanding of the crosstalk between the immune system and adipocytes may shed light in better treatment modalities for obesity and obesity‐related diseases.
- Full Text: false
- Date Issued: 2016
- Authors: Apostolopoulos, Vasso , De Courten, Maximilian P J , Stojanovska, Lily , Blatch, Gregory L , Tangalakis, Kathy , De Courten, Barbora
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66120 , vital:28905 , https://doi.org/10.1002/mnfr.201500272
- Description: publisher version , A number of approaches have been utilized in the prevention, management, and treatment of obesity, including, surgery, medication, diet, exercise, and overall lifestyle changes. Despite these interventions, the prevalence of obesity and the various disorders related to it is growing. In obesity, there is a constant state of chronic low‐grade inflammation which is characterized by activation and infiltration of pro‐inflammatory immune cells and a dysregulated production of high levels of pro‐inflammatory cytokines. This pro‐inflammatory milieu contributes to insulin resistance, type‐2 diabetes, cardiovascular disease, and other related co‐morbidities. The roles of the innate (macrophages, neutrophils, eosinophils, mast cells, NK cells, MAIT cells) and the adaptive (CD4 T cells, CD8 T cells, regulatory T cells, and B cells) immune responses and the roles of adipokines and cytokines in adipose tissue inflammation and obesity are discussed. An understanding of the crosstalk between the immune system and adipocytes may shed light in better treatment modalities for obesity and obesity‐related diseases.
- Full Text: false
- Date Issued: 2016
Assessment of potential anti-cancer stem cell activity of marine algal compounds using an in vitro mammosphere assay:
- de la Mare, Jo-Anne, Sterrenberg, Jason N, Sukhthankar, Mugdha G, Chiwakata, Maynard T, Beukes, Denzil R, Blatch, Gregory L, Edkins, Adrienne L
- Authors: de la Mare, Jo-Anne , Sterrenberg, Jason N , Sukhthankar, Mugdha G , Chiwakata, Maynard T , Beukes, Denzil R , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165184 , vital:41216 , DOI: 10.1186/1475-2867-13-39
- Description: The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents.
- Full Text:
- Date Issued: 2013
- Authors: de la Mare, Jo-Anne , Sterrenberg, Jason N , Sukhthankar, Mugdha G , Chiwakata, Maynard T , Beukes, Denzil R , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165184 , vital:41216 , DOI: 10.1186/1475-2867-13-39
- Description: The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents.
- Full Text:
- Date Issued: 2013
Quinones and halogenated monoterpenes of algal origin show anti-proliferative effects against breast cancer cells in vitro:
- de la Mare, Jo-Anne, Lawson, Jessica C, Chiwakata, Maynard T, Beukes, Denzil R, Blatch, Gregory L, Edkins, Adrienne L
- Authors: de la Mare, Jo-Anne , Lawson, Jessica C , Chiwakata, Maynard T , Beukes, Denzil R , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2012
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165165 , vital:41214 , DOI: 10.1007/s10637-011-9788-0
- Description: Red and brown algae have been shown to produce a variety of compounds with chemotherapeutic potential. A recent report described the isolation of a range of novel polyhalogenated monoterpene compounds from the red algae Plocamium corallorhiza and Plocamium cornutum collected off the coast of South Africa, together with the previously described tetraprenylquinone, sargaquinoic acid (SQA), from the brown algae Sargassum heterophyllum. In our study, the algal compounds were screened for anti-proliferative activity against metastatic MDA-MB-231 breast cancer cells revealing that a number of compounds displayed anti-cancer activity with IC50 values in the micromolar range. A subset of the compounds was tested for differential toxicity in the MCF-7/MCF12A system and five of these, including sargaquinoic acid, were found to be at least three times more toxic to the breast cancer than the non-malignant cell line.
- Full Text:
- Date Issued: 2012
- Authors: de la Mare, Jo-Anne , Lawson, Jessica C , Chiwakata, Maynard T , Beukes, Denzil R , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2012
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165165 , vital:41214 , DOI: 10.1007/s10637-011-9788-0
- Description: Red and brown algae have been shown to produce a variety of compounds with chemotherapeutic potential. A recent report described the isolation of a range of novel polyhalogenated monoterpene compounds from the red algae Plocamium corallorhiza and Plocamium cornutum collected off the coast of South Africa, together with the previously described tetraprenylquinone, sargaquinoic acid (SQA), from the brown algae Sargassum heterophyllum. In our study, the algal compounds were screened for anti-proliferative activity against metastatic MDA-MB-231 breast cancer cells revealing that a number of compounds displayed anti-cancer activity with IC50 values in the micromolar range. A subset of the compounds was tested for differential toxicity in the MCF-7/MCF12A system and five of these, including sargaquinoic acid, were found to be at least three times more toxic to the breast cancer than the non-malignant cell line.
- Full Text:
- Date Issued: 2012
Targeting conserved pathways as a strategy for novel drug development: disabling the cellular stress response:
- Edkins, Adrienne L, Blatch, Gregory L
- Authors: Edkins, Adrienne L , Blatch, Gregory L
- Date: 2012
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/165129 , vital:41211 , ISBN 978-3-642-28174-7 , DOI: 10.1007/978-3-642-28175-4_4
- Description: The ability to respond to and cope with stress at a molecular level is essential for cell survival. The stress response is conserved across organisms by the expression of a group of molecular chaperones known as heat shock proteins (HSP). HSP are ubiquitous and highly conserved proteins that regulate cellular protein homeostasis and trafficking under physiological and stressful conditions, including diseases such as cancer and malaria. HSP are good drug targets for the treatment of human diseases, as the significant functional and structural data available suggest that they are essential for cell survival and that, despite conservation across species, there are biophysical and biochemical differences between HSP in normal and disease states that allow HSP to be selectively targeted. In this chapter, we review the international status of this area of research and highlight progress by us and other African researchers towards the characterisation and targeting of HSP from humans and parasites from Plasmodium and Trypanosoma as drug targets.
- Full Text:
- Date Issued: 2012
- Authors: Edkins, Adrienne L , Blatch, Gregory L
- Date: 2012
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/165129 , vital:41211 , ISBN 978-3-642-28174-7 , DOI: 10.1007/978-3-642-28175-4_4
- Description: The ability to respond to and cope with stress at a molecular level is essential for cell survival. The stress response is conserved across organisms by the expression of a group of molecular chaperones known as heat shock proteins (HSP). HSP are ubiquitous and highly conserved proteins that regulate cellular protein homeostasis and trafficking under physiological and stressful conditions, including diseases such as cancer and malaria. HSP are good drug targets for the treatment of human diseases, as the significant functional and structural data available suggest that they are essential for cell survival and that, despite conservation across species, there are biophysical and biochemical differences between HSP in normal and disease states that allow HSP to be selectively targeted. In this chapter, we review the international status of this area of research and highlight progress by us and other African researchers towards the characterisation and targeting of HSP from humans and parasites from Plasmodium and Trypanosoma as drug targets.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »