Evaluation of surface functionalized electrospun polyacrylonitrile nanofibers for heavy metal ions removal from synthetic wastewater
- Maqinana, Siphosethu Sesethu
- Authors: Maqinana, Siphosethu Sesethu
- Date: 2020-12
- Subjects: Nanofibers , Nanostructured materials
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/20871 , vital:46680
- Description: Heavy metal ions are elements that are discharged into water streams from municipal or industrial waste. In abundance, they can be threating to the environment and human health. Amongst other several convention methods, adsorption has been proven to be the most effective method in the removal of heavy metal ions from wastewater. The aim of this research was to fabricate electrospun polyacrylonitrile (PAN) nanofibers and modify their surface to improve the adsorption efficiency for Chromium and Cadmium metal ions from synthetic wastewater. Electrospun nanofibers PAN nanofibers were fabricated via electrospinning process though careful monitoring of its parameters and modified via two-step process: hydrolysis with sodium hydroxide (NaOH), hydrochloric acid (HCl) and ethylenediamine (EDA). The morphologies, functional groups, thermal stability, chemical composition and crystallinities or amorphous structures of the nanofibers were characterised by Scanning electron microscopy (SEM), Fourier-Transform Infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD), respectively. The experiments were conducted in batch tests to analyse the effect to pH, contact time and initial concentration of the solution. Ultraviolet-Visible spectroscopy (UV-Vis) was used to analyse the concentration of metal ions. The adsorption equilibrium was reached after 120 min with a maximum adsorption capacity of 301.1 mg/g for Cd(II) ions and 195.02 mg/g for Cr(VI) ions. The adsorption capacity increased with increasing pH and initial concentration of the solution. The adsorption capacity of Cd(II) and Cr(VI) ions was higher at pH 8 and 10, respectively. The equilibrium data was best described using Freundlich isotherm with a maximum adsorption capacity for Cd(II) ions than Cr(VI) ions. Pseudo-second order kinetic model best fitted both heavy metal ions with R2 value of 0.99 for Cr(VI) ions and 0.67 for Cd(II) ions. Heavy metal ions were desorbed from the nanofibers after one regeneration cycle with an equilibrium concentration of 4.83 mg/L for Cr(VI) ions and 43.06 mg/L for Cd(II) ions. , Thesis (MSc) (Chemistry) -- University of Fort Hare, 2021
- Full Text:
- Date Issued: 2020-12
- Authors: Maqinana, Siphosethu Sesethu
- Date: 2020-12
- Subjects: Nanofibers , Nanostructured materials
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/20871 , vital:46680
- Description: Heavy metal ions are elements that are discharged into water streams from municipal or industrial waste. In abundance, they can be threating to the environment and human health. Amongst other several convention methods, adsorption has been proven to be the most effective method in the removal of heavy metal ions from wastewater. The aim of this research was to fabricate electrospun polyacrylonitrile (PAN) nanofibers and modify their surface to improve the adsorption efficiency for Chromium and Cadmium metal ions from synthetic wastewater. Electrospun nanofibers PAN nanofibers were fabricated via electrospinning process though careful monitoring of its parameters and modified via two-step process: hydrolysis with sodium hydroxide (NaOH), hydrochloric acid (HCl) and ethylenediamine (EDA). The morphologies, functional groups, thermal stability, chemical composition and crystallinities or amorphous structures of the nanofibers were characterised by Scanning electron microscopy (SEM), Fourier-Transform Infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD), respectively. The experiments were conducted in batch tests to analyse the effect to pH, contact time and initial concentration of the solution. Ultraviolet-Visible spectroscopy (UV-Vis) was used to analyse the concentration of metal ions. The adsorption equilibrium was reached after 120 min with a maximum adsorption capacity of 301.1 mg/g for Cd(II) ions and 195.02 mg/g for Cr(VI) ions. The adsorption capacity increased with increasing pH and initial concentration of the solution. The adsorption capacity of Cd(II) and Cr(VI) ions was higher at pH 8 and 10, respectively. The equilibrium data was best described using Freundlich isotherm with a maximum adsorption capacity for Cd(II) ions than Cr(VI) ions. Pseudo-second order kinetic model best fitted both heavy metal ions with R2 value of 0.99 for Cr(VI) ions and 0.67 for Cd(II) ions. Heavy metal ions were desorbed from the nanofibers after one regeneration cycle with an equilibrium concentration of 4.83 mg/L for Cr(VI) ions and 43.06 mg/L for Cd(II) ions. , Thesis (MSc) (Chemistry) -- University of Fort Hare, 2021
- Full Text:
- Date Issued: 2020-12
Preparation and characterization of sodium alginate-based dissolvable bandages as potential wound dressings
- Authors: Ndlovu, Sindi Prescila
- Date: 2020
- Subjects: Nanostructured materials
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: http://hdl.handle.net/10353/18800 , vital:42734
- Description: Burn wounds are among the leading causes of mortality and morbidity globally. Burn wounds are painful, cause social isolation and causes post-traumatic stress disorder (PTSD) due to prolonged hospital treatment. The challenges encountered in the treatment of burn wounds are infections resulting from the use of wound dressings that do not protect the wounds from microbial invasion. Sodium alginate-based dissolvable bandages were prepared and encapsulated with various antibiotics (ampicillin and ciprofloxacin) and nanoparticles (i.e. zinc oxide and silver). The dissolvable bandages were characterized by FTIR, SEM/EDX, TEM, XRD and TGA. Furthermore, the porosity, water uptake, biodegradation, antibacterial studies, and water vapour transmittance properties of the bandages were also studied. The prepared sodium alginate-based dissolvable bandage incorporated with varied amount of drugs (such as ampicillin, ciprofloxacin, zinc oxide and silver nanoparticle) exhibited good porosity, high water uptake, excellent WVTR with sustained drug release profiles. The loading of ZnO Nps, CLP/ZnO Nps and Ag Nps/CLP into the bandages improved the antibacterial activity of the bandages against both gram-negative and gram-positive strains of bacteria. XRD confirmed the amorphous nature of the dissolvable bandage and the absence of free drugs. FTIR revealed the successful encapsulation of the antibiotics and nanoparticle into the dissolvable bandages. The dissolvable bandages exhibited high water uptake ranging from 870-4468% with good porosity suggesting that they can absorb large amount of wound exudates. The drug release for all the bandages obeyed the Korsemeyer Peppas drug release model with n values in the range 0.1-1.0. The results obtained indicate that the bandages are potential wound dressings for burns and for patients with sensitive skins.
- Full Text:
- Date Issued: 2020
- Authors: Ndlovu, Sindi Prescila
- Date: 2020
- Subjects: Nanostructured materials
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: http://hdl.handle.net/10353/18800 , vital:42734
- Description: Burn wounds are among the leading causes of mortality and morbidity globally. Burn wounds are painful, cause social isolation and causes post-traumatic stress disorder (PTSD) due to prolonged hospital treatment. The challenges encountered in the treatment of burn wounds are infections resulting from the use of wound dressings that do not protect the wounds from microbial invasion. Sodium alginate-based dissolvable bandages were prepared and encapsulated with various antibiotics (ampicillin and ciprofloxacin) and nanoparticles (i.e. zinc oxide and silver). The dissolvable bandages were characterized by FTIR, SEM/EDX, TEM, XRD and TGA. Furthermore, the porosity, water uptake, biodegradation, antibacterial studies, and water vapour transmittance properties of the bandages were also studied. The prepared sodium alginate-based dissolvable bandage incorporated with varied amount of drugs (such as ampicillin, ciprofloxacin, zinc oxide and silver nanoparticle) exhibited good porosity, high water uptake, excellent WVTR with sustained drug release profiles. The loading of ZnO Nps, CLP/ZnO Nps and Ag Nps/CLP into the bandages improved the antibacterial activity of the bandages against both gram-negative and gram-positive strains of bacteria. XRD confirmed the amorphous nature of the dissolvable bandage and the absence of free drugs. FTIR revealed the successful encapsulation of the antibiotics and nanoparticle into the dissolvable bandages. The dissolvable bandages exhibited high water uptake ranging from 870-4468% with good porosity suggesting that they can absorb large amount of wound exudates. The drug release for all the bandages obeyed the Korsemeyer Peppas drug release model with n values in the range 0.1-1.0. The results obtained indicate that the bandages are potential wound dressings for burns and for patients with sensitive skins.
- Full Text:
- Date Issued: 2020
Integration of nanostructured metal sulfides into titanium (iv) oxide for high performance dye sensitized solar cell
- Authors: Agoro, Adedoyin Mojeed
- Date: 2020-01
- Subjects: Nanostructured materials , Sulfur compounds
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/21523 , vital:48857
- Description: The work in this thesis describes synthesis, characterization and integration of nanostructured metal sulfides into titanium (IV) oxide for high performance dye sensitized solar cell. The synthesised single source precursors were evaluated using TGA, FTIR, , UV-Vis, PL,1H and 13CNMR, SEM, EDS, HRTEM, XRD, AFM, Raman, I-V, CV, Bode plot and EIS. TGA revealed the thermal degradation and quantified the mass percentage of metal sulphides as 33percent, 45percent and 27percent for CuS, PbS and SnS nanoparticles, respectively. FTIR analysis showed bands at 1580-1450 cm-1, and 1060-940 cm-1 tentatively assigned to C-N and C-S stretching frequencies correspondingly. The (M-S) stretching was observed at 577-406 cm-1 for the complexes using bis(N-di-isopropyl-N-octyldithiocarbamato) as primary ligands. IR spectra of bis(N-1,4-phenyl-N-(4-morpholinedithiocarbamato) as secondary ligands suggested the presence of (C-N) vibrations at 1508-1513 cm-1 for the complexes and 1507-1584 cm-1 for the ligands. The bands in the region of 973-1030 cm-1 were assigned to the complexes and 974- 983 cm-1 were attributed to the ligands, whereas vibration frequencies at 416-625 cm-1 were Nelson's Choice were included in these preliminary variety trials (PVTs) as checks. Twenty-five hybrids expressing high values for the Smith – Hazel selection index were identified across sites over years. Among those hybrids were two checks, namely Q16 (PAN5Q649R) and Q33 (Phb31MO7BR). The top five high – yielding hybrids selected based on the selection index were considered to be the most productive, stable and adaptable based on the GGE biplot and AMMI stability values. None of these single cross hybrids over yielded the best hybrid check (Q16) in the current study. A high potential environment, Centane, was the ideal environments for evaluating genotypes in the present study. The studies showed inbred lines L22, L23, L26, L28, L25, L29 and L31 to be low N stress tolerant at 0 kg N ha-1 based on the low N stress tolerance indices under glasshouse and the field conditions; they were also among the top ten grain-yielders under field conditions at 0 kg N ha-1. Also, in the NUE study, they were found to be among the top ten most N-efficient inbred lines under low N soils, under 30 kg N ha-1, and were among the top twenty-four inbred lines with high NUE values across the N levels in the study. Inbred lines L29 and L22 also produced testcross hybrids that were among the top twenty based on GY under 0 kg N ha-1. The testcross hybrids produced from these inbred lines were also among the top twenty-five with outstanding SCA effects for GY. These inbred lines were also parental lines of some of the top twenty- five best hybrids selected based on the Smith – Hazel selection index in the PVT study. Inbred lines L22, L23, L26, L28, L25, L29 and L31 can therefore further be evaluated and used as sources of N-tolerance genes in QPM breeding programs. tentatively assigned to M-S bond in the complexes. UV-Vis spectroscopy analysis for the complexes and from primary and secondary ligands are between within the range of 338 – 340 nm. PL studies of the primary ligands with metal complexes indicated emissions at 464 nm, 462 nm, 462 nm for Pb(II) and Sn(II), and Cu(II). The presence of secondary ligands was revealed by the absorption peaks at 455, 456 and 457 nm, exhibiting both the signals and chemical constituents of the respective ligands and their corresponding complexes. The electrochemistry in chapters 3 and 4 reveals that phase angle in the Bode plots changes with frequencies for Sn(II) complexes at 58, 57 and 8 respectively. Bode plots showed remarkable electronics of Cu(II) and Pb(II) complex interfaces. The CV curves exhibit two kinds of redox peaks indicating reduction at the negative potentials and oxidation at the positive potentials. The EIS, electrodes produced Rct for Pb(II), Cu(II) and Sn(II) electrodes in chapter 3. Moreover The EIS revealed that Sn(II) sensitizer displaced a stronger chemical capacitance and improved efficiency which could lead to better electron lifetime yield. The obtained CV exhibited anodic and cathodic peaks for Pb(II), connoting a reduction in Pb2+ and oxidation in Pb2-. Bode plot phase angle displayed Sn(II) and Pb(II) with maxima phase, indicating the presence of time constants of the electrode processes in Bis(N-1,4-Phenyl-N-Morhpo-dithiocarbamato bis(Mo/1,4-PHDTC) complexes. From the results in chapter 4, the XRD patterns exhibited good crystalline nature of CuS as a result of sharp and strong diffraction peaks obtained. There are eight peaks of 2θ angle between 26° and 79° relating to orthorhombic structure of SnS. While PbS has a cubic structure with polycrystalline nature, PbS/HDA and PbS both correspond to their crystalline planes of (200), (111), (220), (311), (222), (400), (331), (420) and (422) affirming to PbS QDs structure. SnS/HDA and SnS photosensitizers displayed eleven peaks between the values of 27.02° to 66.05° for SnS/HDA and 26.03° to 66.04° for SnS, in confirming the orthorhombic structure. SEM analysis revealed hexagonal structure for CuS, while PbS and SnS exhibited mesoporous nanostructures with spherical nanoparticles. HRTEM images indicated spherical nano-particles with particle sizes in the range of 3.14 - 44.39 nm. The outcome of HRTEM analysis revealed crystallite sizes varying as 10.90 – 11.57 nm, 3.14 – 5.95 nm and 14.96 – 44.39 nm for the CuS, PbS and SnS, originated from the primary ligands. HRTEM images originating from the Bis(N-1,4-Phenyl-N-Morhpo-dithiocarbamato bis(Mo/1,4-PHDTC) complexes indicated spherical nano-particles with particle sizes of 3.14 - 44.39 nm. Raman images in chapter 5 revealed the presence of Raman active modes of E2g 66 cm-1 and 304, cm-1 and E1g 627 cm-1 and 706 cm-1 for CuS, the active modes of TO 65 cm-1 and 2LO 626 cm-1 for PbS, active modes of B1g 69 cm-1 for SnS and 266 cm-1 for Ag. From the AFM results in chapter 5, CuS photosensitizer displayed a smooth surface and particle estimated to be 0.50 μm and height profile of 12percent. The PbS photosensitizer exhibited particle size of 1.82 μm and 0.654 μm for PbS/HDA, depicting a regular crystal growth rate. The size distribution of SnS nanoparticle at 357 nm connotes smooth surface and good compactness on the substrate. However, SnS/HDA at 122 nm displayed shape and size of non-symmetrical particles. AFM analysis in chapter 8 revealed good size roughness for CuS film. PbS exhibited particle size of 365 nm and size height of 18percent as the smoothest film, while PbS/HDA revealed 1.22 um size with 9percent size height. The evaluated particle sizes varied as 0.11- 1.18 um for SnS/HDA and 0.054 – 0.54 um for SnS films grown at 360 ℃ with size height of 16.8 and 8.4percent. The I-V efficiency obtained indicated that the CuS exhibited a much better efficiency in the QDSCs with higher Voc and the highest η being 2.85percent compared to CuS/HDA and Cu(II). High JSC of 11 mA/cm has been observed in the PbS/HDA QDSSCs, compared to the PbS and Pb(II) cells. The SnS/HDA exhibited a better performance compared to SnS and Sn(II) sensitizers due to the presence of HDA capping agent. , Thesis (MSc) -- Faculty of Science and Agriculture, 2020
- Full Text:
- Date Issued: 2020-01
- Authors: Agoro, Adedoyin Mojeed
- Date: 2020-01
- Subjects: Nanostructured materials , Sulfur compounds
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/21523 , vital:48857
- Description: The work in this thesis describes synthesis, characterization and integration of nanostructured metal sulfides into titanium (IV) oxide for high performance dye sensitized solar cell. The synthesised single source precursors were evaluated using TGA, FTIR, , UV-Vis, PL,1H and 13CNMR, SEM, EDS, HRTEM, XRD, AFM, Raman, I-V, CV, Bode plot and EIS. TGA revealed the thermal degradation and quantified the mass percentage of metal sulphides as 33percent, 45percent and 27percent for CuS, PbS and SnS nanoparticles, respectively. FTIR analysis showed bands at 1580-1450 cm-1, and 1060-940 cm-1 tentatively assigned to C-N and C-S stretching frequencies correspondingly. The (M-S) stretching was observed at 577-406 cm-1 for the complexes using bis(N-di-isopropyl-N-octyldithiocarbamato) as primary ligands. IR spectra of bis(N-1,4-phenyl-N-(4-morpholinedithiocarbamato) as secondary ligands suggested the presence of (C-N) vibrations at 1508-1513 cm-1 for the complexes and 1507-1584 cm-1 for the ligands. The bands in the region of 973-1030 cm-1 were assigned to the complexes and 974- 983 cm-1 were attributed to the ligands, whereas vibration frequencies at 416-625 cm-1 were Nelson's Choice were included in these preliminary variety trials (PVTs) as checks. Twenty-five hybrids expressing high values for the Smith – Hazel selection index were identified across sites over years. Among those hybrids were two checks, namely Q16 (PAN5Q649R) and Q33 (Phb31MO7BR). The top five high – yielding hybrids selected based on the selection index were considered to be the most productive, stable and adaptable based on the GGE biplot and AMMI stability values. None of these single cross hybrids over yielded the best hybrid check (Q16) in the current study. A high potential environment, Centane, was the ideal environments for evaluating genotypes in the present study. The studies showed inbred lines L22, L23, L26, L28, L25, L29 and L31 to be low N stress tolerant at 0 kg N ha-1 based on the low N stress tolerance indices under glasshouse and the field conditions; they were also among the top ten grain-yielders under field conditions at 0 kg N ha-1. Also, in the NUE study, they were found to be among the top ten most N-efficient inbred lines under low N soils, under 30 kg N ha-1, and were among the top twenty-four inbred lines with high NUE values across the N levels in the study. Inbred lines L29 and L22 also produced testcross hybrids that were among the top twenty based on GY under 0 kg N ha-1. The testcross hybrids produced from these inbred lines were also among the top twenty-five with outstanding SCA effects for GY. These inbred lines were also parental lines of some of the top twenty- five best hybrids selected based on the Smith – Hazel selection index in the PVT study. Inbred lines L22, L23, L26, L28, L25, L29 and L31 can therefore further be evaluated and used as sources of N-tolerance genes in QPM breeding programs. tentatively assigned to M-S bond in the complexes. UV-Vis spectroscopy analysis for the complexes and from primary and secondary ligands are between within the range of 338 – 340 nm. PL studies of the primary ligands with metal complexes indicated emissions at 464 nm, 462 nm, 462 nm for Pb(II) and Sn(II), and Cu(II). The presence of secondary ligands was revealed by the absorption peaks at 455, 456 and 457 nm, exhibiting both the signals and chemical constituents of the respective ligands and their corresponding complexes. The electrochemistry in chapters 3 and 4 reveals that phase angle in the Bode plots changes with frequencies for Sn(II) complexes at 58, 57 and 8 respectively. Bode plots showed remarkable electronics of Cu(II) and Pb(II) complex interfaces. The CV curves exhibit two kinds of redox peaks indicating reduction at the negative potentials and oxidation at the positive potentials. The EIS, electrodes produced Rct for Pb(II), Cu(II) and Sn(II) electrodes in chapter 3. Moreover The EIS revealed that Sn(II) sensitizer displaced a stronger chemical capacitance and improved efficiency which could lead to better electron lifetime yield. The obtained CV exhibited anodic and cathodic peaks for Pb(II), connoting a reduction in Pb2+ and oxidation in Pb2-. Bode plot phase angle displayed Sn(II) and Pb(II) with maxima phase, indicating the presence of time constants of the electrode processes in Bis(N-1,4-Phenyl-N-Morhpo-dithiocarbamato bis(Mo/1,4-PHDTC) complexes. From the results in chapter 4, the XRD patterns exhibited good crystalline nature of CuS as a result of sharp and strong diffraction peaks obtained. There are eight peaks of 2θ angle between 26° and 79° relating to orthorhombic structure of SnS. While PbS has a cubic structure with polycrystalline nature, PbS/HDA and PbS both correspond to their crystalline planes of (200), (111), (220), (311), (222), (400), (331), (420) and (422) affirming to PbS QDs structure. SnS/HDA and SnS photosensitizers displayed eleven peaks between the values of 27.02° to 66.05° for SnS/HDA and 26.03° to 66.04° for SnS, in confirming the orthorhombic structure. SEM analysis revealed hexagonal structure for CuS, while PbS and SnS exhibited mesoporous nanostructures with spherical nanoparticles. HRTEM images indicated spherical nano-particles with particle sizes in the range of 3.14 - 44.39 nm. The outcome of HRTEM analysis revealed crystallite sizes varying as 10.90 – 11.57 nm, 3.14 – 5.95 nm and 14.96 – 44.39 nm for the CuS, PbS and SnS, originated from the primary ligands. HRTEM images originating from the Bis(N-1,4-Phenyl-N-Morhpo-dithiocarbamato bis(Mo/1,4-PHDTC) complexes indicated spherical nano-particles with particle sizes of 3.14 - 44.39 nm. Raman images in chapter 5 revealed the presence of Raman active modes of E2g 66 cm-1 and 304, cm-1 and E1g 627 cm-1 and 706 cm-1 for CuS, the active modes of TO 65 cm-1 and 2LO 626 cm-1 for PbS, active modes of B1g 69 cm-1 for SnS and 266 cm-1 for Ag. From the AFM results in chapter 5, CuS photosensitizer displayed a smooth surface and particle estimated to be 0.50 μm and height profile of 12percent. The PbS photosensitizer exhibited particle size of 1.82 μm and 0.654 μm for PbS/HDA, depicting a regular crystal growth rate. The size distribution of SnS nanoparticle at 357 nm connotes smooth surface and good compactness on the substrate. However, SnS/HDA at 122 nm displayed shape and size of non-symmetrical particles. AFM analysis in chapter 8 revealed good size roughness for CuS film. PbS exhibited particle size of 365 nm and size height of 18percent as the smoothest film, while PbS/HDA revealed 1.22 um size with 9percent size height. The evaluated particle sizes varied as 0.11- 1.18 um for SnS/HDA and 0.054 – 0.54 um for SnS films grown at 360 ℃ with size height of 16.8 and 8.4percent. The I-V efficiency obtained indicated that the CuS exhibited a much better efficiency in the QDSCs with higher Voc and the highest η being 2.85percent compared to CuS/HDA and Cu(II). High JSC of 11 mA/cm has been observed in the PbS/HDA QDSSCs, compared to the PbS and Pb(II) cells. The SnS/HDA exhibited a better performance compared to SnS and Sn(II) sensitizers due to the presence of HDA capping agent. , Thesis (MSc) -- Faculty of Science and Agriculture, 2020
- Full Text:
- Date Issued: 2020-01
Synthesis and characterization of titanium dioxide nanotubes on fluorine-doped tin oxide (FTO) glass substrate using electro-anodization technique
- Zinya, Simcelile https://orcid.org/0000-0001-5864-0957
- Authors: Zinya, Simcelile https://orcid.org/0000-0001-5864-0957
- Date: 2017-12
- Subjects: Titanium dioxide , Nanotubes , Nanostructured materials
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/23979 , vital:62201
- Description: One-dimensional (1-D) titanium dioxide nanotubes (TNTs) have attracted much attention as a promising alternative electrode material for dye sensitized solar cell (DSSC). As compared to the randomly packed and disordered TiO2 nanoparticles (TNPs) network with numerous particle-particle interfaces, TNTs prove to have fascinating features than make them suitable candidates in DSSCs. Well-structured TNTs arrays are of great potential among the various types of 1D TiO2 nano-materials owing to their superior electron transport properties with limited grain boundaries. Vectorial transport of photon generated electrons along the TNTs has been reported to lead to higher charge mobility which is crucial for improvement of DSSC performances. In this work, highly adhesive titanium films were deposited on functional substrates (FS) using radio frequency (RF) sputtering technique at a sputtering output power of 1kW, operating pressure of 1.5 Pa and at a deposition temperature of 200 °C to obtain a thickness of 10 μm under an inert argon atmosphere. The duration period for sputter coating 10 μm thickness of titanium film layer was 122 minutes with sputter rate for titanium target of about 82 nm per minutes. Subsequently, the RF sputtered titanium films were anodized with 0.5 wt. percent ammonium fluoride + 0.35 wt. percent deionised water and 96 wt. percent glycerol electrolyte solution at room temperature at 60 V for 72 hours. The resulting TNTs on functional substrates (TNTs-FS) were subjected to thermal treatment at 350 °C, 450 °C, 550 °C and 650 °C for 3 hours under oxygen atmosphere. The effect of annealing temperature on the morphological, and structural properties have been scrutinized. The as prepared and thermally treated TNTs-FS were characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and Confocal Raman Spectroscopy (CRS). SEM and HRTEM techniques were employed to confirm the presence of the TNTs-FS and also to study the structural-morphology of the TNTs as the annealing temperature increases. SEM revealed improvement in morphology with increase in sample annealing temperature, even at high temperatures such as 650 °C with no collapsing and sintering of the TNTs-FS occurring. SEM images revealed TNTs-FS with pore diameter sizes in the range between 85-170 nm. This is in compliance with HRTEM analysis, which revealed smooth and straight tube walls and improved surface morphology with increase in annealing temperature. In addition HRTEM images revealed pore diameter of TNTs-FS in the range between 85-165 nm. Furthermore, HRTEM revealed lattice fringes of 0.351, 0.352 and 0.353 nm between the neighbouring lattice fringes. All corresponding to (101) planes of anatase phase TNTs at different annealing temperatures (350-650 °C). The crystallographic structure of TNTs-FS was characterized by XRD measurements after thermal treatment at 350 °C, 450 °C, 550 °C and 650 °C. The XRD pattern revealed peaks in the wide angle range of 2θ (20° < 2θ > 80°) discovered at 29.43°, 45.10°, 56.52°, 63.5°, 64.92° and 74.81° corresponding to the planes (101), (112), (200), (105), (211) and (204) crystalline structures of the anatase TNTs. The intensity of the peaks increased with increasing annealing temperature. The strong sharp peaks indicate the large quantities and higher degrees of crystallinity of anatase phase of the TNTs. CRS Large Area Scan (LAS) and Depth profiling (DP) were employed to evaluate the crystallinity and phase distribution of TNTs-FS thermally treated at different temperatures. CRS LAS in the XY direction of TNTs-FS revealed the presence of differently crystallized anatase phases of TiO2 with Raman vibrational modes of 159.38 cm-1 (Eg), 208.37 cm-1 (Eg), 399.67 cm-1 (B1g), 514.25 cm-1 (A1g) and 641.58 cm-1 (Eg) for the samples annealed at 350 °C. The effect of annealing temperature on TiO2 phase evolution was meticulously evaluated using CRS for TNTs-FS for the samples annealed at 350 °C, 450 °C, 550 °C and 650 °C. The FWHM was estimated from CRS and decreases with increasing annealing temperature resulting in increasing crystallinity. Increase in anatase FWHM and anatase peak intensity implies higher degree of crystallinity and increasing crystallite sizes were also confirmed by XRD. Growing of titanium dioxide on functional substrates one novel contribution towards the fabrication of efficient electrode materials for solar cell development. Our method of characterizing TNTs-FS from a large area scan along the surface of the samples and depth profiling along the TNTs tube walls using confocal Raman spectroscopy prove to be a pivotal step in the development of efficient photoelectrode materials of the solar devices. , Thesis (MSc) -- Faculty of Science and Agriculture, 2017
- Full Text:
- Date Issued: 2017-12
- Authors: Zinya, Simcelile https://orcid.org/0000-0001-5864-0957
- Date: 2017-12
- Subjects: Titanium dioxide , Nanotubes , Nanostructured materials
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/23979 , vital:62201
- Description: One-dimensional (1-D) titanium dioxide nanotubes (TNTs) have attracted much attention as a promising alternative electrode material for dye sensitized solar cell (DSSC). As compared to the randomly packed and disordered TiO2 nanoparticles (TNPs) network with numerous particle-particle interfaces, TNTs prove to have fascinating features than make them suitable candidates in DSSCs. Well-structured TNTs arrays are of great potential among the various types of 1D TiO2 nano-materials owing to their superior electron transport properties with limited grain boundaries. Vectorial transport of photon generated electrons along the TNTs has been reported to lead to higher charge mobility which is crucial for improvement of DSSC performances. In this work, highly adhesive titanium films were deposited on functional substrates (FS) using radio frequency (RF) sputtering technique at a sputtering output power of 1kW, operating pressure of 1.5 Pa and at a deposition temperature of 200 °C to obtain a thickness of 10 μm under an inert argon atmosphere. The duration period for sputter coating 10 μm thickness of titanium film layer was 122 minutes with sputter rate for titanium target of about 82 nm per minutes. Subsequently, the RF sputtered titanium films were anodized with 0.5 wt. percent ammonium fluoride + 0.35 wt. percent deionised water and 96 wt. percent glycerol electrolyte solution at room temperature at 60 V for 72 hours. The resulting TNTs on functional substrates (TNTs-FS) were subjected to thermal treatment at 350 °C, 450 °C, 550 °C and 650 °C for 3 hours under oxygen atmosphere. The effect of annealing temperature on the morphological, and structural properties have been scrutinized. The as prepared and thermally treated TNTs-FS were characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and Confocal Raman Spectroscopy (CRS). SEM and HRTEM techniques were employed to confirm the presence of the TNTs-FS and also to study the structural-morphology of the TNTs as the annealing temperature increases. SEM revealed improvement in morphology with increase in sample annealing temperature, even at high temperatures such as 650 °C with no collapsing and sintering of the TNTs-FS occurring. SEM images revealed TNTs-FS with pore diameter sizes in the range between 85-170 nm. This is in compliance with HRTEM analysis, which revealed smooth and straight tube walls and improved surface morphology with increase in annealing temperature. In addition HRTEM images revealed pore diameter of TNTs-FS in the range between 85-165 nm. Furthermore, HRTEM revealed lattice fringes of 0.351, 0.352 and 0.353 nm between the neighbouring lattice fringes. All corresponding to (101) planes of anatase phase TNTs at different annealing temperatures (350-650 °C). The crystallographic structure of TNTs-FS was characterized by XRD measurements after thermal treatment at 350 °C, 450 °C, 550 °C and 650 °C. The XRD pattern revealed peaks in the wide angle range of 2θ (20° < 2θ > 80°) discovered at 29.43°, 45.10°, 56.52°, 63.5°, 64.92° and 74.81° corresponding to the planes (101), (112), (200), (105), (211) and (204) crystalline structures of the anatase TNTs. The intensity of the peaks increased with increasing annealing temperature. The strong sharp peaks indicate the large quantities and higher degrees of crystallinity of anatase phase of the TNTs. CRS Large Area Scan (LAS) and Depth profiling (DP) were employed to evaluate the crystallinity and phase distribution of TNTs-FS thermally treated at different temperatures. CRS LAS in the XY direction of TNTs-FS revealed the presence of differently crystallized anatase phases of TiO2 with Raman vibrational modes of 159.38 cm-1 (Eg), 208.37 cm-1 (Eg), 399.67 cm-1 (B1g), 514.25 cm-1 (A1g) and 641.58 cm-1 (Eg) for the samples annealed at 350 °C. The effect of annealing temperature on TiO2 phase evolution was meticulously evaluated using CRS for TNTs-FS for the samples annealed at 350 °C, 450 °C, 550 °C and 650 °C. The FWHM was estimated from CRS and decreases with increasing annealing temperature resulting in increasing crystallinity. Increase in anatase FWHM and anatase peak intensity implies higher degree of crystallinity and increasing crystallite sizes were also confirmed by XRD. Growing of titanium dioxide on functional substrates one novel contribution towards the fabrication of efficient electrode materials for solar cell development. Our method of characterizing TNTs-FS from a large area scan along the surface of the samples and depth profiling along the TNTs tube walls using confocal Raman spectroscopy prove to be a pivotal step in the development of efficient photoelectrode materials of the solar devices. , Thesis (MSc) -- Faculty of Science and Agriculture, 2017
- Full Text:
- Date Issued: 2017-12
- «
- ‹
- 1
- ›
- »