Pyrolysis of algal biomass and coal in a rotary kiln reactor: Pyrolysis behaviour, product distribution and kinetic analysis
- Authors: Nyoni, Bothwell
- Date: 2023-12
- Subjects: Algal biofuels , Biomass energy , Coal -- South Africa
- Language: English
- Type: Doctorate theses , text
- Identifier: http://hdl.handle.net/10948/62550 , vital:72823
- Description: There are two primary reasons why the global economy is gradually reducing its dependence on coal as an energy source. Firstly, coal reserves are finite, and while some argue that current reserves will last for generations, the reality is that coal is a non-renewable resource. Secondly, the emissions associated with coal usage have adverse effects on both the environment and human health. While European countries have adopted seemingly aggressive strategies to replace coal and other fossil fuels, South Africa and other developing nations face economic constraints that limit such actions. Fortunately, there are more conservative approaches that can be employed, one of which involves a gradual introduction of renewable energy sources into the energy grid. Wind, solar, and biomass currently stand as the major renewable energy sources under consideration. However, it's worth noting that the intermittent nature of wind and solar energy production poses a significant challenge. Biomass holds the potential to replace coal in retrofitted coal-fired plants. However, the unchecked utilisation of biomass can lead to deforestation and have adverse effects on the human and animal food supply chain, as many essential food items are derived from plants. The debate over using biomass as a fuel source, especially when some types of biomasses can serve as food for humans and animals, has been a subject of ongoing discussion. Furthermore, biomass exhibits a lower energy density when compared to coal. Combustion stands as the primary technology for converting coal into energy and is widely used in most coal-based power plants. Gasification, on the other hand, has been employed for years in South Africa as a coal-to-liquids technology to supplement transportation fuel requirements and reduce reliance on crude oil imports. Pyrolysis, too, has found application as a key method for obtaining high-energy coal char, serving both as an energy source and a reducing agent in blast furnaces for the steelmaking industry. Pyrolysis technologies are gaining popularity in biomass-to-liquids processes due to their simplicity. Currently, there is growing research interest in simultaneous pyrolysis of coal and biomass. The study presented in this thesis focuses on investigating the pyrolysis of Scenedesmus algae biomass and low-grade coal in a small-scale rotary kiln, with particular emphasis on the synthesised liquid products. Algae represent a unique type of biomass that can be cultivated in photo-bioreactors with minimal use of agricultural land. This suggests significant potential for large-scale cultivation of algae, and ongoing efforts are exploring strategies for the mass production of algal biomass.Firstly, pyrolysis studies were carried out via thermogravimetric analysis instruments. It was revealed that because of algae’s considerably higher volatile content and lower carbon content when compared to coal, the pyrolysis process of algal biomass occurred at a faster rate. The highest pyrolytic reactivity of algae was 0.41 mg/min occurring at approximately 290 ᵒC in comparison with coal’s 0.06 mg/min occurring in the approximate temperature range of 550 – 600 ᵒC. The magnitude of the reactivity of the blends depended on the coal/algae ratios used. Furthermore, kinetics analysis revealed that the overall pyrolytic decomposition of coal followed 2nd order kinetics with an activation energy of 81.8 kJ/mol. The decomposition of algae and coal-algae blends occurred in two stages; the first stage decomposition followed 2nd order kinetics with activation energies in the range 130.3 – 145.5 kJ/mol. The second stage decomposition of algae followed 1st order kinetics with an activation energy of 27.3 kJ/mol, whilst coal-algae blends followed 2nd order decomposition with an activation energy range of 69.4 – 74.2 kJ/mol. Secondly, pyrolysis studies were carried out in a rotary kiln reactor wherefrom the char products were collected, and pyrolytic gases condensed to obtain pyroligneous liquid. It was found that the composition of oils synthesised from the pyrolysis of coal was rich in paraffins (52.6 % at 550 ᵒC), however the yield of oil from the pyrolysis of coal was low (6.9 %). Oils from algae and coal-algae blends were dominated by alcohols, fatty acids, fatty acid esters and poly-cyclic aromatic compounds. For example, the most abundant compounds in algae oil produced at 550 ᵒC were fatty acid esters (28.8 %), alcohols (17.6 %), fatty acids (10.8 %) and unsaturated aliphatics (10.7 %); the oil yield obtained from pyrolysis of algae was 40 %. The yields and composition of oils obtained from coal-algae blends were linked to individual contributions from coal and algae, especially at 550 ᵒC; however, the contributions were not proportional due to synergistic effects. This kind of study will contribute to the already existing but limited literature on coal-algae pyrolysis. Furthermore, this study demonstrates the potential of using low-grade coals (an abundant resource in Southern Africa) in conjunction with algal biomass (a renewable resource), in large-scale synthesis of liquid fuels and valuable chemicals via a simple pyrolysis process. , Thesis (MSc) -- Faculty of Science, School of Biomolecular & Chemical Sciences, 2023
- Full Text:
- Date Issued: 2023-12
- Authors: Nyoni, Bothwell
- Date: 2023-12
- Subjects: Algal biofuels , Biomass energy , Coal -- South Africa
- Language: English
- Type: Doctorate theses , text
- Identifier: http://hdl.handle.net/10948/62550 , vital:72823
- Description: There are two primary reasons why the global economy is gradually reducing its dependence on coal as an energy source. Firstly, coal reserves are finite, and while some argue that current reserves will last for generations, the reality is that coal is a non-renewable resource. Secondly, the emissions associated with coal usage have adverse effects on both the environment and human health. While European countries have adopted seemingly aggressive strategies to replace coal and other fossil fuels, South Africa and other developing nations face economic constraints that limit such actions. Fortunately, there are more conservative approaches that can be employed, one of which involves a gradual introduction of renewable energy sources into the energy grid. Wind, solar, and biomass currently stand as the major renewable energy sources under consideration. However, it's worth noting that the intermittent nature of wind and solar energy production poses a significant challenge. Biomass holds the potential to replace coal in retrofitted coal-fired plants. However, the unchecked utilisation of biomass can lead to deforestation and have adverse effects on the human and animal food supply chain, as many essential food items are derived from plants. The debate over using biomass as a fuel source, especially when some types of biomasses can serve as food for humans and animals, has been a subject of ongoing discussion. Furthermore, biomass exhibits a lower energy density when compared to coal. Combustion stands as the primary technology for converting coal into energy and is widely used in most coal-based power plants. Gasification, on the other hand, has been employed for years in South Africa as a coal-to-liquids technology to supplement transportation fuel requirements and reduce reliance on crude oil imports. Pyrolysis, too, has found application as a key method for obtaining high-energy coal char, serving both as an energy source and a reducing agent in blast furnaces for the steelmaking industry. Pyrolysis technologies are gaining popularity in biomass-to-liquids processes due to their simplicity. Currently, there is growing research interest in simultaneous pyrolysis of coal and biomass. The study presented in this thesis focuses on investigating the pyrolysis of Scenedesmus algae biomass and low-grade coal in a small-scale rotary kiln, with particular emphasis on the synthesised liquid products. Algae represent a unique type of biomass that can be cultivated in photo-bioreactors with minimal use of agricultural land. This suggests significant potential for large-scale cultivation of algae, and ongoing efforts are exploring strategies for the mass production of algal biomass.Firstly, pyrolysis studies were carried out via thermogravimetric analysis instruments. It was revealed that because of algae’s considerably higher volatile content and lower carbon content when compared to coal, the pyrolysis process of algal biomass occurred at a faster rate. The highest pyrolytic reactivity of algae was 0.41 mg/min occurring at approximately 290 ᵒC in comparison with coal’s 0.06 mg/min occurring in the approximate temperature range of 550 – 600 ᵒC. The magnitude of the reactivity of the blends depended on the coal/algae ratios used. Furthermore, kinetics analysis revealed that the overall pyrolytic decomposition of coal followed 2nd order kinetics with an activation energy of 81.8 kJ/mol. The decomposition of algae and coal-algae blends occurred in two stages; the first stage decomposition followed 2nd order kinetics with activation energies in the range 130.3 – 145.5 kJ/mol. The second stage decomposition of algae followed 1st order kinetics with an activation energy of 27.3 kJ/mol, whilst coal-algae blends followed 2nd order decomposition with an activation energy range of 69.4 – 74.2 kJ/mol. Secondly, pyrolysis studies were carried out in a rotary kiln reactor wherefrom the char products were collected, and pyrolytic gases condensed to obtain pyroligneous liquid. It was found that the composition of oils synthesised from the pyrolysis of coal was rich in paraffins (52.6 % at 550 ᵒC), however the yield of oil from the pyrolysis of coal was low (6.9 %). Oils from algae and coal-algae blends were dominated by alcohols, fatty acids, fatty acid esters and poly-cyclic aromatic compounds. For example, the most abundant compounds in algae oil produced at 550 ᵒC were fatty acid esters (28.8 %), alcohols (17.6 %), fatty acids (10.8 %) and unsaturated aliphatics (10.7 %); the oil yield obtained from pyrolysis of algae was 40 %. The yields and composition of oils obtained from coal-algae blends were linked to individual contributions from coal and algae, especially at 550 ᵒC; however, the contributions were not proportional due to synergistic effects. This kind of study will contribute to the already existing but limited literature on coal-algae pyrolysis. Furthermore, this study demonstrates the potential of using low-grade coals (an abundant resource in Southern Africa) in conjunction with algal biomass (a renewable resource), in large-scale synthesis of liquid fuels and valuable chemicals via a simple pyrolysis process. , Thesis (MSc) -- Faculty of Science, School of Biomolecular & Chemical Sciences, 2023
- Full Text:
- Date Issued: 2023-12
Nutrient removal and biofuel potential of MaB-floc biomass from an integrated algal pond system treating domestic sewage
- Authors: Sibelo, Linda
- Date: 2020
- Subjects: Biomass energy , Waste products as fuel , Algal biofuels , Sewage -- Purification -- Nutrient removal
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/144955 , vital:38395
- Description: Integrated algal pond systems (IAPS) are a passive water treatment technology derived from the Oswald designed advanced integrated wastewater pond systems (AIWPS®) and effect wastewater treatment based on biological activity of microorganisms within the system, solar energy and gravity. The technology consists of an advanced facultative pond (AFP), a series of interconnected high rate algal oxidation ponds (HRAOP) and algal settling ponds. The symbiotic relationship between microalgae and bacteria facilitated by paddlewheel mixing of HRAOP results in the formation of biomass aggregates known as MaB-flocs. MaB-floc formation enhances nutrient abstraction, gravitational sedimentation and separation from water hence forming two product streams; recyclable water and biomass, both with valorisation potential. This work aimed to determine the suitability of MaB-floc biomass generated in the HRAOP of an IAPS treating domestic sewage as feedstock for biofuel production based on the content of carbohydrate and lipid. Nutrient removal efficiency, biomass productivity and bulk lipid and carbohydrate concentration were monitored for two consecutive three-month periods in the winter and summer seasons of 2018/19. Maximum removal efficiencies of nitrogen and phosphorus were determined as 71% and 75% respectively, demonstrating the efficiency of IAPS as a wastewater treatment technology. MaB-floc biomass productivity in winter and summer was 9.4 g/m2/d and 16.5 g/m2/d respectively indicating the heavy influence of seasonal temperature, possibly day length, and solar irradiation on biomass productivity in the HRAOP. Summer productivity was lower than the maximum theoretical productivity of 25 g/m2/d possibly due to photoinhibition of photosynthesis as well as grazing pressures caused by the proliferation of rotifers mainly of the Brachionus genus. MaB-floc biomass consistently contained higher amounts of carbohydrate than lipid despite the changes in species dominance from Scenedesmus sp. and Desmodesmus sp. in winter to Pediastrum sp. in summer. Variations in MaB-floc biomass carbohydrate content were linked to changes in nitrogen concentration, mainly in the form of nitrates. Lower nitrogen concentration significantly increased the carbohydrate content of MaB-floc biomass from 17.5 ± 0.15% to 33.5 ± 0.3 % recorded in summer. In winter, biomass carbohydrate increased from 18.3 ± 1.2% to 35.8 ± 0.3%.To induce accumulation of carbohydrates through nitrogen starvation, isolated microalgal species native to the HRAOPs of the IAPS at Institute for Environmental Biotechnology Rhodes University(EBRU) were used. The outcome from the laboratory studies showed that carbon partitioning within isolated strains could be altered from carbohydrate to lipid which is more energy-rich. Hence, exploring the biodiesel production option using HRAOP MaB-floc biomass, which had a lipid content ranging between 12.1 ± 0.64 % and 13.9 ± 0.5 %, would require a preconditioning step in the form of nitrogen starvation to enhance its lipid content. Overall, the outcome of outdoor monitoring studies on biomass biochemical composition indicated that HRAOPs operating under natural environmental conditions preferentially generated a biomass rich in carbohydrate. Therefore, anaerobic digestion may be a more viable option for HRAOP MaB-floc biomass because of the high carbohydrate levels ranging between 24.9 ± 0.6 % and 25.6 ± 1.3 % of the dry MaB-floc biomass weight. Despite the low biomass C/N ratio (7.1 to 7.8), the MaB-floc biomass can be anaerobically co-digested with a higher C/N ratio (24) substrate such as in-pond digester sludge, to improve methane yields calculated to be between 0.31 m3 CH4/ kg MaB-floc biomass and 0.33 m3 CH4/ kg MaB-floc biomass. Anaerobic digestion of biomass also produces CO2 which can be recovered and added to HRAOPs to enhance MaB-floc biomass productivity while lowering greenhouse gas emissions from a wastewater treatment plant. The digestate from the anaerobic process, which is rich in nitrogen and phosphorus can be used as a biofertiliser. Thus, a potential MaB-floc biomass biorefinery consisting of biogas and bio-fertiliser pathways can be established using IAPS treating sewage as the platform technology. IAPS is a system designed to operate in a way that is passive and without substantial environmental impact but technological innovations and a reduction in the size of the system are required to make the technology more acceptable.
- Full Text:
- Date Issued: 2020
- Authors: Sibelo, Linda
- Date: 2020
- Subjects: Biomass energy , Waste products as fuel , Algal biofuels , Sewage -- Purification -- Nutrient removal
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/144955 , vital:38395
- Description: Integrated algal pond systems (IAPS) are a passive water treatment technology derived from the Oswald designed advanced integrated wastewater pond systems (AIWPS®) and effect wastewater treatment based on biological activity of microorganisms within the system, solar energy and gravity. The technology consists of an advanced facultative pond (AFP), a series of interconnected high rate algal oxidation ponds (HRAOP) and algal settling ponds. The symbiotic relationship between microalgae and bacteria facilitated by paddlewheel mixing of HRAOP results in the formation of biomass aggregates known as MaB-flocs. MaB-floc formation enhances nutrient abstraction, gravitational sedimentation and separation from water hence forming two product streams; recyclable water and biomass, both with valorisation potential. This work aimed to determine the suitability of MaB-floc biomass generated in the HRAOP of an IAPS treating domestic sewage as feedstock for biofuel production based on the content of carbohydrate and lipid. Nutrient removal efficiency, biomass productivity and bulk lipid and carbohydrate concentration were monitored for two consecutive three-month periods in the winter and summer seasons of 2018/19. Maximum removal efficiencies of nitrogen and phosphorus were determined as 71% and 75% respectively, demonstrating the efficiency of IAPS as a wastewater treatment technology. MaB-floc biomass productivity in winter and summer was 9.4 g/m2/d and 16.5 g/m2/d respectively indicating the heavy influence of seasonal temperature, possibly day length, and solar irradiation on biomass productivity in the HRAOP. Summer productivity was lower than the maximum theoretical productivity of 25 g/m2/d possibly due to photoinhibition of photosynthesis as well as grazing pressures caused by the proliferation of rotifers mainly of the Brachionus genus. MaB-floc biomass consistently contained higher amounts of carbohydrate than lipid despite the changes in species dominance from Scenedesmus sp. and Desmodesmus sp. in winter to Pediastrum sp. in summer. Variations in MaB-floc biomass carbohydrate content were linked to changes in nitrogen concentration, mainly in the form of nitrates. Lower nitrogen concentration significantly increased the carbohydrate content of MaB-floc biomass from 17.5 ± 0.15% to 33.5 ± 0.3 % recorded in summer. In winter, biomass carbohydrate increased from 18.3 ± 1.2% to 35.8 ± 0.3%.To induce accumulation of carbohydrates through nitrogen starvation, isolated microalgal species native to the HRAOPs of the IAPS at Institute for Environmental Biotechnology Rhodes University(EBRU) were used. The outcome from the laboratory studies showed that carbon partitioning within isolated strains could be altered from carbohydrate to lipid which is more energy-rich. Hence, exploring the biodiesel production option using HRAOP MaB-floc biomass, which had a lipid content ranging between 12.1 ± 0.64 % and 13.9 ± 0.5 %, would require a preconditioning step in the form of nitrogen starvation to enhance its lipid content. Overall, the outcome of outdoor monitoring studies on biomass biochemical composition indicated that HRAOPs operating under natural environmental conditions preferentially generated a biomass rich in carbohydrate. Therefore, anaerobic digestion may be a more viable option for HRAOP MaB-floc biomass because of the high carbohydrate levels ranging between 24.9 ± 0.6 % and 25.6 ± 1.3 % of the dry MaB-floc biomass weight. Despite the low biomass C/N ratio (7.1 to 7.8), the MaB-floc biomass can be anaerobically co-digested with a higher C/N ratio (24) substrate such as in-pond digester sludge, to improve methane yields calculated to be between 0.31 m3 CH4/ kg MaB-floc biomass and 0.33 m3 CH4/ kg MaB-floc biomass. Anaerobic digestion of biomass also produces CO2 which can be recovered and added to HRAOPs to enhance MaB-floc biomass productivity while lowering greenhouse gas emissions from a wastewater treatment plant. The digestate from the anaerobic process, which is rich in nitrogen and phosphorus can be used as a biofertiliser. Thus, a potential MaB-floc biomass biorefinery consisting of biogas and bio-fertiliser pathways can be established using IAPS treating sewage as the platform technology. IAPS is a system designed to operate in a way that is passive and without substantial environmental impact but technological innovations and a reduction in the size of the system are required to make the technology more acceptable.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »