Thermal and photostability studies of triprolidine hydrochloride and its mixtures with cyclodextrin and glucose
- Authors: Ndlebe, Vuyelwa Jacqueline
- Date: 2004
- Subjects: Antihistamines , Glucose , Cyclodextrins
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4387 , http://hdl.handle.net/10962/d1005052 , Antihistamines , Glucose , Cyclodextrins
- Description: Triprolidine hydrochloride (C₁₉H₂₂N₂.HCl.H₂O) (TPH) is a well-known antihistamine drug. It melts between 118°C and 122°C and the amount of water present is 4.5 mass percent. TPH is reported as being photosensitive and must be stored in sealed, light-tight containers. The thermal stabilities of TPH and of 1:1 molar and 1:1 mass ratio physical mixtures of TPH with beta-cyclodextrin (BCD) and with glucose have been examined using DSC, TG and TG-FTIR, complemented by X-ray powder diffraction (XRD) and infrared spectroscopic (IR) studies. Thermal studies of the solid TPH/BCD mixtures indicated that interaction between the components occurs and it is possible that the TPH molecule may be least partially accommodated in the cavity of the BCD host molecule. XRD results support this indication of inclusion. The results for mixtures of TPH/glucose also suggest that there is interaction between the two components. The results of molecular modelling suggest that TPH is most likely to be accommodated in the BCD cavity as a neutral triprolidine molecule with the toluene portion of the molecule entering first. There is also an indication that the Z-isomer should be accommodated slightly more readily than the E-isomer. Photostability studies were done by irradiating thin layers of solid samples of TPH and its mixtures for various times at 40°C using an Atlas Sun test CPS lamp operating at 550 W h m⁻². An analytical method using HPLC was developed and validated to determine the amounts of any photodegradants. DSC, TG, FTIR, XRD and IR were also used examine the irradiated samples. XRD results showed that changes in the TPH crystal structure occurred during irradiation and that these changes increased with the time of irradiation. Irradiation for 20 hours with UV or exposure to sunlight showed the presence of degradants. The results obtained illustrate the general stability of TPH, especially in the solid state. Although the potential for isomerization to the pharmaceutically inactive Z-isomer exists, this transformation would require extreme light conditions. The study has also shown TPH to be compatible with both glucose and BCD, which are potential excipients both in solid and liquid dosage forms. The presents of these excipients in dosage forms will thus not adversely affect the stability and the therapeutic efficacy of TPH. . An analytical method using HPLC was developed and validated to determine the amounts of any photodegradants. DSC, TG, FTIR, XRD and IR were also used examine the irradiated samples. XRD results showed that changes in the TPH crystal structure occurred during irradiation and that these changes increased with the time of irradiation. Irradiation for 20 hours with UV or exposure to sunlight showed the presence of degradants.
- Full Text:
- Date Issued: 2004
Formulation and dissolution assessment of a novel repeat action tablet containing a decongestant and an antihistamine
- Authors: Verner, Jennifer Joan
- Date: 2001
- Subjects: Antihistamines , Tablets (Medicine) , Tableting , Ephedrine
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3798 , http://hdl.handle.net/10962/d1003276 , Antihistamines , Tablets (Medicine) , Tableting , Ephedrine
- Description: Controlled and sustained release dosage forms are the focus of worldwide research. These dosage forms facilitate patient compliance by simplifying the dosage regimen, and decrease the risk of adverse effects by reducing large fluctuations in the plasma concentration of the drug. The objective of this study was to formulate a repeat-action tablet to provide a sustained release dose of pseudoephedrine sulfate (PSS), and an immediate release dose of both PSS and loratadine. The release profile was compared to that of a commercially available preparation, Clarityne-D®. This formulation developed presents a novel mechanism of sustaining the release of PSS. The prototype tablet consisted of a sustained release core coated with an ethylcellulose dispersion to introduce a lag phase into the release profile and a second outer film coat incorporating PSS and loratadine. The core comprised an ethylcellulose granulation of PSS compressed into a hydroxypropyl methylcellulose matrix. The release of PSS from prototypes was assessed using USP Apparatus 3, as this apparatus was more representative of in vivo conditions and discriminated more effectively between the different tablet compositions produced during development. All dissolution samples were analysed for PSS and loratadine using validated highperformance liquid chromatographic methods. The prototype sustained release cores were found to be more resistant than the reference product to elevated temperature and humidity (40°C/87% RH) with fewer observed changes to the release profiles following storage for up to six months. This study was a feasibility study to obtain proof of concept. The release profile obtained from the prototype tablets was similar (f₂ = 50.0) to that of the reference product. Further development and optimisation of this dosage form is necessary, including evaluation of the choice of hydrophobic polymer, the effect of compression force and tablet geometry and characterisation of the release mechanism from the coated matrix. Assessment of these factors is necessary in order to optimise the formulation with respect to the desired therapeutic objectives.
- Full Text:
- Date Issued: 2001