Genetic analysis and field application of a UV-tolerant strain of CrleGV for improved control of Thaumatotibia leucotreta
- Authors: Bennett, Tahnee Tashia
- Date: 2022-10-14
- Subjects: Cryptophlebia leucotreta Biological control , Pests Integrated control , Biological pest control agents , Ultraviolet radiation , Oligonucleotides
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362741 , vital:65358
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), also known as false codling moth (FCM), is indigenous to sub-Saharan Africa. Thaumatotibia leucotreta has been controlled through an integrated pest management (IPM) programme, which includes chemical control, sterile insect technique (SIT), cultural and biological control. As part of the biological control, a key component is the use of Cryptophlebia leucotreta granulovirus (CrleGV-SA). Currently, CryptogranTM, a commercial formulation of CrleGV, is the preferred product to use in South Africa for the control of T. leucotreta. The registration of the biopesticide Cryptogran (River bioscience, South Africa) was established after conducting extensive field trials with CrleGV-SA. One of the major factors affecting the baculovirus efficacy in the field is UV irradiation. A UV-tolerant Cryptophlebia leucotreta granulovirus (CrleGV-SA-C5) isolate was isolated after consecutive cycles of UV exposure. This UV-tolerant isolate is genetically distinct from the CrleGV-SA isolate. The CrleGV-SA-C5 isolate has the potential as a biological control agent. The control of T. leucotreta in South Africa could be improved by the development of novel isolates into new biopesticide formulations. To date, there has not been any field trials conducted on the CrleGV-SA-C5 isolate. Therefore, it is important to determine the biological and genetic stability of this isolate and to conduct field trials with CrleGV-SA- C5 to test the efficacy of the isolate before possible production into a biopesticide. A de novo assembly was conducted to reassemble the genome of CrleGV-SA-C5 which was followed by a sequence comparison with the CrleGV-SA genome. The identification of SNPs, led to the design of oligonucleotides flanking the regions where the SNPs were detected. Polymerase chain reaction amplification of the target regions was conducted using the oligonucleotides. After sequence comparison, seven SNPs were detected and PCR amplification was successful using the three oligonucleotides, Pif-2, HypoP and Lef-8/HP. To differentiate between CrleGV-SA-C5 and CrleGV-SA genomes and confirm the presence of the SNPs, two methods of screening were conducted. The first was the construction of six plasmids, the plasmids contained the targeted pif-2, HypoP, and the Lef-8/HP insert regions from both the CrleGV-SA-C5 and CrleGV-SA genome region where the SNPs were identified, followed by sequencing. The Five recombinant plasmids, pC5_Pif-2, pSA_Pif-2, pC5_HypoP, pSA_HypoP, and pC5_Lef-8/HP were successfully sequenced. No amplicon was obtained for one of the plasmids used as template (pSA_Lef-8/HP) and therefore the PCR product used for cloning was sequenced instead. Sequence alignment confirmed the presence of four of the five targeted SNPs in the genome of the CrleGV-SA-C5 isolate. However, of these only one SNP (UV_7) rendered a suitable marker for the differentiation between the CrleGV-SA-C5 and CrleGV-SA isolates as the SNPs, UV_2, UV_3 and UV_5, were also present in the CrleGV- SA sequences. The second screening method was a quantitative polymerase chain reaction (qPCR) melt curve analysis to differentiate between the CrleGV-SA-C5 and CrleGV-SA isolates. qPCR melt curve analysis was done using the CrleGV-SA-C5 and CrleGV-SA HypoP PCR products. This technique was unable to differentiate between the CrleGV-SA-C5 and CrleGV-SA isolates. However, this may be as a result of sequence data confirming that SNP UV_5 originally identified in the CrleGV-SA-C5 HypoP region was identical to the SNP at the same position in the CrleGV-SA HypoP region. Following the differentiation of the CrleGV-SA-C5 and CrleGV-SA isolates through two screening methods, the genetic integrity of the CrleGV-SA-C5 isolate after two virus bulk-ups was determined by PCR amplification of the target regions in the bulk-up virus followed by sequencing. Prior to virus bulk-up, surface dose bioassays were conducted on 4th instar larvae and LC50 and LC90 values of 4.01 x 106 OBs/ml and 8.75 x 109 OBs/ml respectively were obtained. The CrleGV-SA-C5 isolate was then bulked up in fourth instar T. leucotreta larvae using the LC90 value that was determined. Sequencing of the target regions from the CrleGV- SA-C5_BU2 (bulk-up 2) was conducted. Sequencing results confirmed the presence of the target SNPs in the CrleGV-SA-C5_BU2 genome. The UV-tolerance of the CrleGV-SA-C5 isolate in comparison to the CrleGV-SA isolate was evaluated by detached fruit bioassays under natural UV irradiation. Two detached fruit bioassays were set-up, a UV exposure and a non-UV exposure bioassay set-up. Three treatments were used for each bioassay set-up which were the viruses CrleGV-SA-C5 and CrleGV-SA and a ddH2O control. Statistical analysis indicated that there was no significant difference between the virus treatments in both the UV exposed detached fruit bioassay and the non-UV exposed detached fruit bioassay. This study is the second study to report on the de novo assembly of the CrleGV-SA-C5 and sequence comparison with the CrleGV-SA genome, and the first to report on the UV-tolerance of the CrleGV-SA-C5 isolate by detached fruit bioassays. Future work could involve further evaluation of intraspecific genetic variability in the CrleGV-SA-C5 isolate and to identify any additional SNPs present within the genome that can be used as suitable markers for differentiation between the CrleGV-SA-C5 and CrleGV-SA isolates. It was recognised that it is required to conduct further detached fruit bioassays and field trials, but with improved protocols, for the efficacy and UV-tolerance of the CrleGV-SA-C5 isolate to be conclusively determined. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Bennett, Tahnee Tashia
- Date: 2022-10-14
- Subjects: Cryptophlebia leucotreta Biological control , Pests Integrated control , Biological pest control agents , Ultraviolet radiation , Oligonucleotides
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362741 , vital:65358
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), also known as false codling moth (FCM), is indigenous to sub-Saharan Africa. Thaumatotibia leucotreta has been controlled through an integrated pest management (IPM) programme, which includes chemical control, sterile insect technique (SIT), cultural and biological control. As part of the biological control, a key component is the use of Cryptophlebia leucotreta granulovirus (CrleGV-SA). Currently, CryptogranTM, a commercial formulation of CrleGV, is the preferred product to use in South Africa for the control of T. leucotreta. The registration of the biopesticide Cryptogran (River bioscience, South Africa) was established after conducting extensive field trials with CrleGV-SA. One of the major factors affecting the baculovirus efficacy in the field is UV irradiation. A UV-tolerant Cryptophlebia leucotreta granulovirus (CrleGV-SA-C5) isolate was isolated after consecutive cycles of UV exposure. This UV-tolerant isolate is genetically distinct from the CrleGV-SA isolate. The CrleGV-SA-C5 isolate has the potential as a biological control agent. The control of T. leucotreta in South Africa could be improved by the development of novel isolates into new biopesticide formulations. To date, there has not been any field trials conducted on the CrleGV-SA-C5 isolate. Therefore, it is important to determine the biological and genetic stability of this isolate and to conduct field trials with CrleGV-SA- C5 to test the efficacy of the isolate before possible production into a biopesticide. A de novo assembly was conducted to reassemble the genome of CrleGV-SA-C5 which was followed by a sequence comparison with the CrleGV-SA genome. The identification of SNPs, led to the design of oligonucleotides flanking the regions where the SNPs were detected. Polymerase chain reaction amplification of the target regions was conducted using the oligonucleotides. After sequence comparison, seven SNPs were detected and PCR amplification was successful using the three oligonucleotides, Pif-2, HypoP and Lef-8/HP. To differentiate between CrleGV-SA-C5 and CrleGV-SA genomes and confirm the presence of the SNPs, two methods of screening were conducted. The first was the construction of six plasmids, the plasmids contained the targeted pif-2, HypoP, and the Lef-8/HP insert regions from both the CrleGV-SA-C5 and CrleGV-SA genome region where the SNPs were identified, followed by sequencing. The Five recombinant plasmids, pC5_Pif-2, pSA_Pif-2, pC5_HypoP, pSA_HypoP, and pC5_Lef-8/HP were successfully sequenced. No amplicon was obtained for one of the plasmids used as template (pSA_Lef-8/HP) and therefore the PCR product used for cloning was sequenced instead. Sequence alignment confirmed the presence of four of the five targeted SNPs in the genome of the CrleGV-SA-C5 isolate. However, of these only one SNP (UV_7) rendered a suitable marker for the differentiation between the CrleGV-SA-C5 and CrleGV-SA isolates as the SNPs, UV_2, UV_3 and UV_5, were also present in the CrleGV- SA sequences. The second screening method was a quantitative polymerase chain reaction (qPCR) melt curve analysis to differentiate between the CrleGV-SA-C5 and CrleGV-SA isolates. qPCR melt curve analysis was done using the CrleGV-SA-C5 and CrleGV-SA HypoP PCR products. This technique was unable to differentiate between the CrleGV-SA-C5 and CrleGV-SA isolates. However, this may be as a result of sequence data confirming that SNP UV_5 originally identified in the CrleGV-SA-C5 HypoP region was identical to the SNP at the same position in the CrleGV-SA HypoP region. Following the differentiation of the CrleGV-SA-C5 and CrleGV-SA isolates through two screening methods, the genetic integrity of the CrleGV-SA-C5 isolate after two virus bulk-ups was determined by PCR amplification of the target regions in the bulk-up virus followed by sequencing. Prior to virus bulk-up, surface dose bioassays were conducted on 4th instar larvae and LC50 and LC90 values of 4.01 x 106 OBs/ml and 8.75 x 109 OBs/ml respectively were obtained. The CrleGV-SA-C5 isolate was then bulked up in fourth instar T. leucotreta larvae using the LC90 value that was determined. Sequencing of the target regions from the CrleGV- SA-C5_BU2 (bulk-up 2) was conducted. Sequencing results confirmed the presence of the target SNPs in the CrleGV-SA-C5_BU2 genome. The UV-tolerance of the CrleGV-SA-C5 isolate in comparison to the CrleGV-SA isolate was evaluated by detached fruit bioassays under natural UV irradiation. Two detached fruit bioassays were set-up, a UV exposure and a non-UV exposure bioassay set-up. Three treatments were used for each bioassay set-up which were the viruses CrleGV-SA-C5 and CrleGV-SA and a ddH2O control. Statistical analysis indicated that there was no significant difference between the virus treatments in both the UV exposed detached fruit bioassay and the non-UV exposed detached fruit bioassay. This study is the second study to report on the de novo assembly of the CrleGV-SA-C5 and sequence comparison with the CrleGV-SA genome, and the first to report on the UV-tolerance of the CrleGV-SA-C5 isolate by detached fruit bioassays. Future work could involve further evaluation of intraspecific genetic variability in the CrleGV-SA-C5 isolate and to identify any additional SNPs present within the genome that can be used as suitable markers for differentiation between the CrleGV-SA-C5 and CrleGV-SA isolates. It was recognised that it is required to conduct further detached fruit bioassays and field trials, but with improved protocols, for the efficacy and UV-tolerance of the CrleGV-SA-C5 isolate to be conclusively determined. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2022
- Full Text:
- Date Issued: 2022-10-14
An investigation into yeast-baculovirus synergism for the improved control of Thaumatotibia leucotreta, an economically important pest of citrus
- Authors: Van der Merwe, Marcél
- Date: 2021-10-29
- Subjects: Baculoviruses , Cryptophlebia leucotreta , Yeast , Natural pesticides , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control , Thaumatotibia leucotreta
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/191236 , vital:45073
- Description: A mutualistic association between Cydia pomonella and yeasts belonging to the genus Metschnikowia has previously been demonstrated. Larval feeding galleries inoculated with M. andauensis, reduced larval mortality and enhanced larval development. Additionally, adult C. pomonella female oviposition preference was also shown to be influenced by the volatiles produced by M. andauensis. This mutualistic relationship was manipulated for biological control purposes, by combining M. pulcherrima with the baculovirus Cydia pomonella granulovirus. The combination of M. pulcherrima with brown cane sugar and CpGV in laboratory assays and field trials resulted in a significant increase in larval mortality. A similar observation was made when M. pulcherrima was substituted for Saccharomyces cerevisiae. This indicates that yeasts harbour the potential for use in biological control, especially when combined with other well-established biocontrol methods. Thaumatotibia leucotreta is a phytophagous insect endemic to southern Africa. It is highly significant to the South African citrus industry due to its classification as a phytosanitary pest by most international markets. An integrated pest management programme has been implemented to control T. leucotreta. The baculovirus Cryptophlebia leucotreta granulovirus forms one component of this programme and is highly effective. In this study, we proposed to determine which yeast species occur naturally in the gut of T. leucotreta larvae and to examine whether any of the isolated yeast species, when combined with the CrleGV-SA, enhance its effectiveness. Firstly, Navel oranges infested with T. leucotreta larvae were collected from geographically distinct citrus-producing regions across South Africa. This led to the isolation and identification of six yeast species from the gut of T. leucotreta larvae via PCR amplification and sequencing of the internal transcribed spacer region and D1/D2 domain of the large subunit. Six yeast species were identified, viz. Meyerozyma guilliermondii, Hanseniaspora uvarum, Clavispora lusitaniae, Kluyveromyces marxianus, Pichia kudriavzevii and Pichia kluyveri. Additionally, Saccharomyces cerevisiae was included as a control in all trials due to its commercial availability and use in the artificial diet used to rear T. leucotreta. Secondly, larval development and attraction assays were conducted with the isolated yeast species. Thaumatotibia leucotreta larvae that fed on Navel oranges inoculated with M. guilliermondii, P. kluyveri, H. uvarum, and S. cerevisiae had accelerated developmental periods and reduced mortality rates. Additionally, it was demonstrated that T. leucotreta neonates were attracted to YPD broth cultures inoculated with P. kluyveri, H. uvarum, P. kudriavzevii and K. marxianus for feeding. Thirdly, oviposition preference assays were conducted with adult T. leucotreta females to determine whether the isolated yeast species influence their egg-laying in two-choice and multiple-choice tests. Navel oranges were inoculated with a specific yeast isolate, and mated adult females were left to oviposit. Meyerozyma guilliermondii, P. kudriavzevii and H. uvarum were shown to influence adult T. leucotreta female oviposition preference in two-choice tests. However, multiple-choice tests using the aforementioned yeast species did not mimic these results. Lastly, a series of detached fruit bioassays were performed to determine the optimal yeast:virus ratio, test all isolated yeast species in combination with CrleGV-SA and to further enhance yeast/virus formulation through the addition of an adjuvant and surfactant. CrleGV-SA was applied at a lethal concentration that would kill 50 % of T. leucotreta larvae. The optimal yeast concentration to use alongside CrleGV-SA was determined. Pichia kluyveri, P. kudriavzevii, K. marxianus and S. cerevisiae in combination with CrleGV-SA increased larval mortality compared to CrleGV-SA alone. The inclusion of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S. cerevisiae plus CrleGV-SA formulations greatly enhanced their efficacy. Additionally, semi-field trials were initiated using P. kudriavzevii and S. cerevisiae, with promising preliminary results being obtained, although more replicates need to be performed. The experiments performed in this study provide a platform for further research into the application of a yeast/virus combination as a novel control and monitoring option for T. leucotreta in the field. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Van der Merwe, Marcél
- Date: 2021-10-29
- Subjects: Baculoviruses , Cryptophlebia leucotreta , Yeast , Natural pesticides , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control , Thaumatotibia leucotreta
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/191236 , vital:45073
- Description: A mutualistic association between Cydia pomonella and yeasts belonging to the genus Metschnikowia has previously been demonstrated. Larval feeding galleries inoculated with M. andauensis, reduced larval mortality and enhanced larval development. Additionally, adult C. pomonella female oviposition preference was also shown to be influenced by the volatiles produced by M. andauensis. This mutualistic relationship was manipulated for biological control purposes, by combining M. pulcherrima with the baculovirus Cydia pomonella granulovirus. The combination of M. pulcherrima with brown cane sugar and CpGV in laboratory assays and field trials resulted in a significant increase in larval mortality. A similar observation was made when M. pulcherrima was substituted for Saccharomyces cerevisiae. This indicates that yeasts harbour the potential for use in biological control, especially when combined with other well-established biocontrol methods. Thaumatotibia leucotreta is a phytophagous insect endemic to southern Africa. It is highly significant to the South African citrus industry due to its classification as a phytosanitary pest by most international markets. An integrated pest management programme has been implemented to control T. leucotreta. The baculovirus Cryptophlebia leucotreta granulovirus forms one component of this programme and is highly effective. In this study, we proposed to determine which yeast species occur naturally in the gut of T. leucotreta larvae and to examine whether any of the isolated yeast species, when combined with the CrleGV-SA, enhance its effectiveness. Firstly, Navel oranges infested with T. leucotreta larvae were collected from geographically distinct citrus-producing regions across South Africa. This led to the isolation and identification of six yeast species from the gut of T. leucotreta larvae via PCR amplification and sequencing of the internal transcribed spacer region and D1/D2 domain of the large subunit. Six yeast species were identified, viz. Meyerozyma guilliermondii, Hanseniaspora uvarum, Clavispora lusitaniae, Kluyveromyces marxianus, Pichia kudriavzevii and Pichia kluyveri. Additionally, Saccharomyces cerevisiae was included as a control in all trials due to its commercial availability and use in the artificial diet used to rear T. leucotreta. Secondly, larval development and attraction assays were conducted with the isolated yeast species. Thaumatotibia leucotreta larvae that fed on Navel oranges inoculated with M. guilliermondii, P. kluyveri, H. uvarum, and S. cerevisiae had accelerated developmental periods and reduced mortality rates. Additionally, it was demonstrated that T. leucotreta neonates were attracted to YPD broth cultures inoculated with P. kluyveri, H. uvarum, P. kudriavzevii and K. marxianus for feeding. Thirdly, oviposition preference assays were conducted with adult T. leucotreta females to determine whether the isolated yeast species influence their egg-laying in two-choice and multiple-choice tests. Navel oranges were inoculated with a specific yeast isolate, and mated adult females were left to oviposit. Meyerozyma guilliermondii, P. kudriavzevii and H. uvarum were shown to influence adult T. leucotreta female oviposition preference in two-choice tests. However, multiple-choice tests using the aforementioned yeast species did not mimic these results. Lastly, a series of detached fruit bioassays were performed to determine the optimal yeast:virus ratio, test all isolated yeast species in combination with CrleGV-SA and to further enhance yeast/virus formulation through the addition of an adjuvant and surfactant. CrleGV-SA was applied at a lethal concentration that would kill 50 % of T. leucotreta larvae. The optimal yeast concentration to use alongside CrleGV-SA was determined. Pichia kluyveri, P. kudriavzevii, K. marxianus and S. cerevisiae in combination with CrleGV-SA increased larval mortality compared to CrleGV-SA alone. The inclusion of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S. cerevisiae plus CrleGV-SA formulations greatly enhanced their efficacy. Additionally, semi-field trials were initiated using P. kudriavzevii and S. cerevisiae, with promising preliminary results being obtained, although more replicates need to be performed. The experiments performed in this study provide a platform for further research into the application of a yeast/virus combination as a novel control and monitoring option for T. leucotreta in the field. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- Date Issued: 2021-10-29
Potential Synergism between Entomopathogenic Fungi and Entomopathogenic Nematodes for the control of false codling moth (Thaumatotibia leucotreta)
- Authors: Prinsloo, Samantha Lee
- Date: 2021-10
- Subjects: Cryptophlebia leucotreta , Entomopathogenic fungi , Insect nematodes , Citrus Diseases and pests , Cryptophlebia leucotreta Biological control , Pests Integrated control , Biological pest control agents
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188832 , vital:44790
- Description: False codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) (FCM), is a major phytosanitary pest of citrus in South Africa. Sufficient control measures for the soil-dwelling life stages of FCM have yet to be identified and owing to restrictions on the use of insecticides, non-chemical control options have been investigated including the use of entomopathogenic fungi (EPF) and entomopathogenic nematodes (EPN). Laboratory and field trials on an indigenous EPF, Metarhizium anisopliae FCM Ar 23 B3, have shown that this isolate is capable of inducing mortality in FCM soil-dwelling life stages. Other agents that have been highlighted as potential controls for soil-dwelling FCM life stages are the EPN species Steinernema yirgalemense 157-C, S. jeffreyense J194 and H. noenieputensis 158-C. This study conducted laboratory bioassays to assess the virulence of these four control agents on fifth instar FCM, in 24-well plates. These results reaffirmed the virulence of the four microbial control agents at their recommended doses of 50 IJs (EPN) and 1×107 conidia/ml (EPF) against fifth instar FCM with 80 to 96% larval mortality recorded. The EPF isolate exhibited the lowest mortality whilst S. yirgalemense induced the greatest mortality. In addition, the lethal concentration (LC) values for each isolate were determined using dose response bioassays. These values were previously unknown for all EPN species and for the EPF isolate based on the methodology used in this study. The LC50 results in order from lowest to highest EPN IJ concentration requirements were 4.38 IJs (S. yirgalemense), 4.47 IJs (S. jeffreyense) and 7.11 IJs (H. noenieputensis). The EPF isolate exhibited an LC50 of 3.42×105 conidia/ml. Lastly, research has shown that the combination of two control agents may increase control of late instar lepidopteran and coleopteran larvae, through synergistic interactions. Thus, the interactions that occurred between the combination of these EPN species with the EPF isolate were determined. This study found that when all three EPN species were combined simultaneously and sequentially with the EPF isolate M. anisopliae FCM AR 23 B3, additive interactions took place with exception of the simultaneous application of S. yirgalemense and H. noenieputensis, with the EPF and S. jeffreyense applied 24 h post EPF application. For the former, a synergistic interaction was found, whilst for the latter two, an antagonistic interaction. Although no strongly synergistic interactions were observed, additive interactions have been shown to reach a synergistic level when certain parameters are changed. Moving forward, a uniform methodology for conducting EPF/EPN interaction experiments has been suggested. It has also been recommended that due to the additive interactions observed in this study, laboratory soil-bioassays and field trials should be carried out for all three EPN species in combination with the EPF isolate. This research will inevitably facilitate the constant knowledge into management strategies for the phytosanitary pest, FCM in South African citrus. , Thesis (MSc) -- Science, Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-10
- Authors: Prinsloo, Samantha Lee
- Date: 2021-10
- Subjects: Cryptophlebia leucotreta , Entomopathogenic fungi , Insect nematodes , Citrus Diseases and pests , Cryptophlebia leucotreta Biological control , Pests Integrated control , Biological pest control agents
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188832 , vital:44790
- Description: False codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) (FCM), is a major phytosanitary pest of citrus in South Africa. Sufficient control measures for the soil-dwelling life stages of FCM have yet to be identified and owing to restrictions on the use of insecticides, non-chemical control options have been investigated including the use of entomopathogenic fungi (EPF) and entomopathogenic nematodes (EPN). Laboratory and field trials on an indigenous EPF, Metarhizium anisopliae FCM Ar 23 B3, have shown that this isolate is capable of inducing mortality in FCM soil-dwelling life stages. Other agents that have been highlighted as potential controls for soil-dwelling FCM life stages are the EPN species Steinernema yirgalemense 157-C, S. jeffreyense J194 and H. noenieputensis 158-C. This study conducted laboratory bioassays to assess the virulence of these four control agents on fifth instar FCM, in 24-well plates. These results reaffirmed the virulence of the four microbial control agents at their recommended doses of 50 IJs (EPN) and 1×107 conidia/ml (EPF) against fifth instar FCM with 80 to 96% larval mortality recorded. The EPF isolate exhibited the lowest mortality whilst S. yirgalemense induced the greatest mortality. In addition, the lethal concentration (LC) values for each isolate were determined using dose response bioassays. These values were previously unknown for all EPN species and for the EPF isolate based on the methodology used in this study. The LC50 results in order from lowest to highest EPN IJ concentration requirements were 4.38 IJs (S. yirgalemense), 4.47 IJs (S. jeffreyense) and 7.11 IJs (H. noenieputensis). The EPF isolate exhibited an LC50 of 3.42×105 conidia/ml. Lastly, research has shown that the combination of two control agents may increase control of late instar lepidopteran and coleopteran larvae, through synergistic interactions. Thus, the interactions that occurred between the combination of these EPN species with the EPF isolate were determined. This study found that when all three EPN species were combined simultaneously and sequentially with the EPF isolate M. anisopliae FCM AR 23 B3, additive interactions took place with exception of the simultaneous application of S. yirgalemense and H. noenieputensis, with the EPF and S. jeffreyense applied 24 h post EPF application. For the former, a synergistic interaction was found, whilst for the latter two, an antagonistic interaction. Although no strongly synergistic interactions were observed, additive interactions have been shown to reach a synergistic level when certain parameters are changed. Moving forward, a uniform methodology for conducting EPF/EPN interaction experiments has been suggested. It has also been recommended that due to the additive interactions observed in this study, laboratory soil-bioassays and field trials should be carried out for all three EPN species in combination with the EPF isolate. This research will inevitably facilitate the constant knowledge into management strategies for the phytosanitary pest, FCM in South African citrus. , Thesis (MSc) -- Science, Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-10
Yeast-baculovirus synergism: investigating mixed infections for improved management of the false codling moth, Thaumatotibia leucotreta
- Authors: Van der Merwe, Marcél
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Baculoviruses , Yeast , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62963 , vital:28347
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) or otherwise commonly known as the false codling moth is an indigenous pest of the citrus industry in southern Africa. The pest is highly significant as it impacts negatively on the export of fresh citrus fruits from South Africa to international markets. To control T. leucotreta in South Africa, an integrated pest management (IPM) programme has been implemented. One component of this programme is the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV-SA) which has been formulated into the products Cryptogran™ and Cryptex®. It has previously been reported that there is a mutualistic association between Cydia pomonella (L.) (Lepidoptera: Tortricidae) also known as codling moth, and epiphytic yeasts. Cydia pomonella larval feeding galleries were colonised by yeasts and this, in turn, reduced larval mortality and enhanced larval development. It has been demonstrated in laboratory assays and field trials that combining yeast and brown cane sugar with Cydia pomonella granulovirus (CpGV) significantly increased larval mortality and lowered the proportion of injured apple fruit. This suggests that yeasts can enhance the effectiveness of an insect virus in managing pest larvae. In this study, we proposed to determine which species of yeast occur naturally in the digestive tract, frass and on the epidermis of T. leucotreta larvae and to examine whether any of these yeasts, when combined with the CrleGV-SA, have a synergistic effect in increasing mortality of T. leucotreta larvae. Firstly, Navel oranges infested with T. leucotreta larvae were collected from orchards in Sundays River Valley in Eastern Cape of South Africa. Larvae were extracted and analysed for the presence of yeast on their surface, or in their gut and frass. Four yeasts were isolated from T. leucotreta larvae and identified down to species level via PCR amplification and sequencing of internal transcribed spacer (ITS) region and D1/D2 domain of the large subunit (LSU) of rDNA region. These yeasts were isolated from the frass, epidermis and digestive tract of T. leucotreta larvae. The yeast isolates were identified as Meyerozyma caribbica, Pichia kluyveri, Pichia kudriavzevii and Hanseniaspora opuntiae. A yeast preference assay was conducted on female T. leucotreta moths to examine whether any of the isolated yeast species affected their oviposition preference. Navel oranges were inoculated with the isolated yeast species at a concentration of 6 × 108 cells.ml-1. The assay also included a Brewer’s yeast and distilled water control. Pichia kudriavzevii was shown to be the preferred yeast species for oviposition, as significantly more eggs were deposited on Navel oranges inoculated with this yeast compared to the other treatments. Lastly, a detached fruit bioassay was performed to evaluate the efficacy of mixing P. kudriavzevii with CrleGV-SA to enhance T. leucotreta larvae mortality. Pichia kudriavzevii was selected as it was demonstrated as having an effect on the oviposition preference of female T. leucotreta moths. The concentration at which P. kudriavzevii was applied remained the same as in the preference assay while CrleGV-SA was applied at lethal concentration required to kill 50 % of the population (9.31 × 107 OBs.ml-1). Although an increase in larval mortality was observed between CrleGV-SA being applied alone and the yeast/virus mixture, this result was determined not to be statistically significant. The experiments performed in this study provide a platform for further research into the application of a yeast-virus combination as a novel control option for T. leucotreta in the field. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Van der Merwe, Marcél
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Baculoviruses , Yeast , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62963 , vital:28347
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) or otherwise commonly known as the false codling moth is an indigenous pest of the citrus industry in southern Africa. The pest is highly significant as it impacts negatively on the export of fresh citrus fruits from South Africa to international markets. To control T. leucotreta in South Africa, an integrated pest management (IPM) programme has been implemented. One component of this programme is the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV-SA) which has been formulated into the products Cryptogran™ and Cryptex®. It has previously been reported that there is a mutualistic association between Cydia pomonella (L.) (Lepidoptera: Tortricidae) also known as codling moth, and epiphytic yeasts. Cydia pomonella larval feeding galleries were colonised by yeasts and this, in turn, reduced larval mortality and enhanced larval development. It has been demonstrated in laboratory assays and field trials that combining yeast and brown cane sugar with Cydia pomonella granulovirus (CpGV) significantly increased larval mortality and lowered the proportion of injured apple fruit. This suggests that yeasts can enhance the effectiveness of an insect virus in managing pest larvae. In this study, we proposed to determine which species of yeast occur naturally in the digestive tract, frass and on the epidermis of T. leucotreta larvae and to examine whether any of these yeasts, when combined with the CrleGV-SA, have a synergistic effect in increasing mortality of T. leucotreta larvae. Firstly, Navel oranges infested with T. leucotreta larvae were collected from orchards in Sundays River Valley in Eastern Cape of South Africa. Larvae were extracted and analysed for the presence of yeast on their surface, or in their gut and frass. Four yeasts were isolated from T. leucotreta larvae and identified down to species level via PCR amplification and sequencing of internal transcribed spacer (ITS) region and D1/D2 domain of the large subunit (LSU) of rDNA region. These yeasts were isolated from the frass, epidermis and digestive tract of T. leucotreta larvae. The yeast isolates were identified as Meyerozyma caribbica, Pichia kluyveri, Pichia kudriavzevii and Hanseniaspora opuntiae. A yeast preference assay was conducted on female T. leucotreta moths to examine whether any of the isolated yeast species affected their oviposition preference. Navel oranges were inoculated with the isolated yeast species at a concentration of 6 × 108 cells.ml-1. The assay also included a Brewer’s yeast and distilled water control. Pichia kudriavzevii was shown to be the preferred yeast species for oviposition, as significantly more eggs were deposited on Navel oranges inoculated with this yeast compared to the other treatments. Lastly, a detached fruit bioassay was performed to evaluate the efficacy of mixing P. kudriavzevii with CrleGV-SA to enhance T. leucotreta larvae mortality. Pichia kudriavzevii was selected as it was demonstrated as having an effect on the oviposition preference of female T. leucotreta moths. The concentration at which P. kudriavzevii was applied remained the same as in the preference assay while CrleGV-SA was applied at lethal concentration required to kill 50 % of the population (9.31 × 107 OBs.ml-1). Although an increase in larval mortality was observed between CrleGV-SA being applied alone and the yeast/virus mixture, this result was determined not to be statistically significant. The experiments performed in this study provide a platform for further research into the application of a yeast-virus combination as a novel control option for T. leucotreta in the field. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »