Photophysicochemical properties and in vitro photodynamic therapy activities of zinc phthalocyanine conjugates with biomolecules and single-walled carbon nanotubes
- Authors: Ogbodu, Racheal O
- Date: 2015
- Subjects: Photochemotherapy , Phthalocyanines , Biomolecules
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4544 , http://hdl.handle.net/10962/d1017924
- Description: The synthesis, photophysicochemcial properties, in vitro dark toxicity and photodynamic therapy (PDT) activities of different derivatives of zinc phthalocyanine (ZnPc) conjugates with biomolecules (folic acid, bovine serum albumin (BSA), ascorbic acid, uridine or spermine) and single-walled carbon nanotubes (SWCNTs) are presented in this work. The fluorescence quantum yields (ΦF) (Subscript F) of the ZnPc derivatives or ZnPc-biomolecule conjugates remained relatively the same as compared to the precursor Pcs. Slight increases were observed in the ΦF (Subscript F) values of conjugates containing substituents such as pyrene, folic acid or BSA with intrinsic fluorescence properties. The triplet quantum yield (ΦT ) (Subscript T) values for some ZnPc conjugates increases compared to the precursor ZnPcs due to extended π conjugation (for the conjugate with pyrene) and the presence of phenyl ring that support spin-orbit charge transfer intersystem crossing to triplet state. While some conjugates showed decreases in the ΦT (Subscript T) values compared to precursor ZnPcs due to the presence of substituents that could quench photo-excited state properties. The singlet oxygen quantum yield (ΦΔ ) values follow the trends of the triplet quantum yield values. The conjugates containing BSA also show increases in the ΦΔ values without corresponding increases in ΦT (Subscript T) values due to the ability of BSA to generate free radicals including singlet oxygen. The presence of SWCNTs decreases the photophysicochemcial properties of some ZnPc-SWCNT conjugates compared to the precursor ZnPcs due to photo-induced electron transfer from an excited Pc complex (electron donor) to SWCNTs (electron acceptor). However, increases were observed in some ZnPc-SWCNT conjugates as a result of fast charge recombination process due to highly short-lived radical ion pair produced. These phenomena affected the ΦF (Suscript F) values, ΦT (Suscript T) values, and the ΦΔ values. Increases or decreases in ΦT (Suscript T) values resulted in corresponding increases or decreases in ΦΔ values
- Full Text:
- Date Issued: 2015
Structural bioinformatics analysis of the Hsp40 and Hsp70 molecular chaperones from humans
- Authors: Adeyemi, Samson Adebowale
- Date: 2014
- Subjects: Structural bioinformatics , Molecular chaperones , Heat shock proteins , Protein-protein interactions , Biomolecules
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4171 , http://hdl.handle.net/10962/d1020962
- Description: HSP70 is one of the most important families of molecular chaperone that regulate the folding and transport of client proteins in an ATP dependent manner. The ATPase activity of HSP70 is stimulated through an interaction with its family of HSP40 co-chaperones. There is evidence to suggest that specific partnerships occur between the different HSP40 and HSP70 isoforms. While some of the residues involved in the interaction are known, many of the residues governing the specificity of HSP40-HSP70 partnerships are not precisely defined. It is not currently possible to predict which HSP40 and HSP70 isoforms will interact. We attempted to use bioinformatics to identify residues involved in the specificity of the interaction between the J domain from HSP40 and the ATPase domain from the HSP70 isoforms from humans. A total of 49 HSP40 and 13 HSP70 sequences from humans were retrieved and used for subsequent analyses. The HSP40 J domains and HSP70 ATPase domains were extracted using python scripts and classified according to the subcellular localization of the proteins using localization prediction programs. Motif analysis was carried out using the full length HSP40 proteins and Multiple Sequence Alignment (MSA) was performed to identify conserved residues that may contribute to the J domain – ATPase domain interactions. Phylogenetic inference of the proteins was also performed in order to study their evolutionary relationship. Homology models of the J domains and ATPase domains were generated. The corresponding models were docked using HADDOCK server in order to analyze possible putative interactions between the partner proteins using the Protein Interactions Calculator (PIC). The level of residue conservation was found to be higher in Type I and II HSP40 than in Type III J proteins. While highly conserved residues on helixes II and III could play critical roles in J domain interactions with corresponding HSP70s, conserved residues on helixes I and IV seemed to be significant in keeping the J domain in its right orientation for functional interactions with HSP70s. Our results also showed that helixes II and III formed the interaction interface for binding to HSP70 ATPase domain as well as the linker residues. Finally, data based docking procedures, such as applied in this study, could be an effective method to investigate protein-protein interactions complex of biomolecules.
- Full Text:
- Date Issued: 2014
Polymers, catalysts and nanostructures a hybrid approach to biomolecule detection
- Authors: Frith, Kelly-Anne
- Date: 2009
- Subjects: Polymers , Nanostructured materials , Biomolecules , Tryptophan , Melatonin , Electrodes , Electrochemistry , Tryptophan oxygenase
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3980 , http://hdl.handle.net/10962/d1004039 , Polymers , Nanostructured materials , Biomolecules , Tryptophan , Melatonin , Electrodes , Electrochemistry , Tryptophan oxygenase
- Description: The main goals in electroanalytical sensing are towards improved sensitivity and selectivity, or specificity, of an analyte. There are several approaches to achieving these goals with the main approach being modification of an electrode surface with synthetic or natural catalysts (enzymes), polymers and also utilisation of nanostructured materials. At present, there is a strong movement towards hybrid sensing which couple different properties of two or more surface modification approaches. In this thesis, a range of these surface modifications were explored for analysis and detection of two main analytes: the amino acid, tryptophan (Trp); and, the neurotransmitter, dopamine (DA). Specifically, this thesis aimed to utilise these methods to enhance the sensitivity and selectivity for Trp over an interferent, the indoleamine, melatonin (Mel); and, DA over the vitamin, ascorbic acid (AA). For Trp detection, immobilisation of an enzyme, Tryptophanase (Trpase) resulted in poor selectivity for the analyte. However, enhanced sensitivity and selectivity was achieved through pH manipulation of the electrolyte medium at a Nafion®-modified electrode surface for both Trp and Mel. At pH 3.0, the Mel and Trp anodic peak potentials were sufficiently resolved allowing for an LOD of 1.60 and 1.62 nM,respectively, and permitting the accurate analysis of Trp in a dietary supplement containing Mel. Multi-walled carbon nanotubes (MWCNTs) suspended in Nafion® exhibited further increases in the signal responses of these analytes at pH 3.0 and 7.4 with minimal change in the resolution of the anodic peaks. A lower sensitivity was, therefore, observed at the Nafion® and MWCNT modified electrode compared to the Nafion®-modified electrode at pH 3.0 with LODs of 0.59 and 0.80 nM exhibited for Trp and Mel, respectively. Enhanced selectivity for Trp in the presence of Mel can be achieved with MWCNTs in the presence of metallotetrasulphonated phthalocyanines (MTSPcs) particularly at pH 3.0, owing to cation exchange effects. However, the lack of sensitivity towards Trp, and even Mel, at this CoTSPc and MWCNT modified electrode remains a drawback. For DA, detection at the MWCNT and Nafion® surface resulted in improved sensitivity over that of both the bare electrode (613.0 nM) and the Nafion® modified electrode (1045.1 nM) with a calculated LOD of 133.9 nM at this layer. Furthermore, improvements in the selectivity of DA were achieved at the Nafion® and MWCNT modified electrode as exclusion of AA (150 μM) was achieved. At the MWCNT and CoTSPc surface, AA was excluded up to 130 μM with sensitivity for DA extending as low as 14.3 nM, far greater than observed for Trp and Mel. These concentrations are well within physiological concentration ranges and represent the most significant solution yet in terms of AA exclusion and enhanced sensitivity for DA. An examination of the surface layering by impedance spectroscopy and atomic force microscopy indicates that the success of the hybrid sensor utilising CoTSPc and MWCNTs lay in improved dispersion of MWCNTs and improved electron transfer kinetics, facilitated by the net charge of the materials present. This thesis, thus, showed the utility of a judicious selection of synthetic and biological catalysts, polymers and carbon nanomaterials towards a hybrid approach to the electrochemical sensing of Trp, Mel, DA and AA with focus on sensitivity and selectivity of these analytes.
- Full Text:
- Date Issued: 2009