Photo-physicochemical characterization and in vitro Photodynamic Therapy Activity of Phthalocyanine-Graphene Quantum Dots Conjugates
- Authors: Nene, Lindokuhle Cindy
- Date: 2020
- Subjects: Photochemotherapy , Cancer -- Chemotherapy , Quantum dots , Graphene , Nanomedicine
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/140463 , vital:37891
- Description: This thesis reports on the preparation of several differently substituted Zn(II) phthalocyanine (Pc) complexes and their respective graphene quantum dots (GQDs) conjugates. In addition, Pc complexes substituted with biologically active molecules used in cancer therapeutics, namely: benzothiazole and morpholine, were also prepared and conjugated to GQDs. The photo-physicochemical properties were determined for both the complexes and their respective conjugates including the fluorescence/ triplet quantum yields and lifetimes as well as the singlet oxygen generating abilities. Upon conjugation to GQDs, the fluorescence of the Pc complexes decreased (insignificant decrease in some cases), with an increase in the triplet quantum yields. However, the singlet quantum yields of the Pcs in the conjugates did not show an increase with the increase in the triplet quantum yields. This is suspected to be due to the screening effect. The cytotoxicity of the complexes in vitro decreased upon conjugation, as a result of reduced actual number of Pc units provided in the conjugate for therapy. An increase in the efficacy upon quaternization was observed, and a relatively better performance was also observed for the cationic complex in combination with the biotin- functionalized GQDs, 7-GQDs-Biotin. Moreover, the cellular uptake of 7-GQDs-Biotin over 24 h was relatively high compared to complexes alone and other Pcs-GQDs conjugates.
- Full Text:
- Date Issued: 2020
- Authors: Nene, Lindokuhle Cindy
- Date: 2020
- Subjects: Photochemotherapy , Cancer -- Chemotherapy , Quantum dots , Graphene , Nanomedicine
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/140463 , vital:37891
- Description: This thesis reports on the preparation of several differently substituted Zn(II) phthalocyanine (Pc) complexes and their respective graphene quantum dots (GQDs) conjugates. In addition, Pc complexes substituted with biologically active molecules used in cancer therapeutics, namely: benzothiazole and morpholine, were also prepared and conjugated to GQDs. The photo-physicochemical properties were determined for both the complexes and their respective conjugates including the fluorescence/ triplet quantum yields and lifetimes as well as the singlet oxygen generating abilities. Upon conjugation to GQDs, the fluorescence of the Pc complexes decreased (insignificant decrease in some cases), with an increase in the triplet quantum yields. However, the singlet quantum yields of the Pcs in the conjugates did not show an increase with the increase in the triplet quantum yields. This is suspected to be due to the screening effect. The cytotoxicity of the complexes in vitro decreased upon conjugation, as a result of reduced actual number of Pc units provided in the conjugate for therapy. An increase in the efficacy upon quaternization was observed, and a relatively better performance was also observed for the cationic complex in combination with the biotin- functionalized GQDs, 7-GQDs-Biotin. Moreover, the cellular uptake of 7-GQDs-Biotin over 24 h was relatively high compared to complexes alone and other Pcs-GQDs conjugates.
- Full Text:
- Date Issued: 2020
The exploration of ARF1 screening assays to determine the drug status of ARF1 in cancer and malaria
- Authors: Ntlantsana, Apelele
- Date: 2020
- Subjects: ADP ribosylation , Golgi apparatus , Guanosine triphosphatase , G proteins , Malariotherapy , Malaria -- Research , Cancer -- Chemotherapy , Malaria -- Chemotherpay
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167232 , vital:41458
- Description: ARF GTPases are key regulators of the secretory and endocytic pathways. ARF1 is involved in the secretory pathway. ARF1 has been implicated in the endoplasmic reticulum to Golgi transport, function of the Golgi apparatus and transport from the trans-Golgi network to endosomes. ARFs cycle between active GTP-bound and inactive GDP-bound conformations. GDP/GTP cycling is regulated by large families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). ARF GEFs facilitate the activation of ARFs by mediating the exchange of GDP for GTP, while ARF GAPs terminate ARF function by stimulating the hydrolysis of the terminal phosphate group of GTP. Based on existing evidence gained from gene manipulation and cell biological investigations, ARF1 has been shown to be fundamentally important for cancer cell proliferation and metastasis and may be a promising target for the development of anti-cancer drugs. Additionally, the conservation of ARFs in eukaryotic organisms leads to an interesting question of whether a single drug target can be used to target multiple diseases. In this case, can a human cancer drug employed for cancer therapy be used in anti-malarial drug therapies? To confirm the drug target status of ARFs using chemical validation experiments, novel inhibitory compounds are needed. This requires the development of complex in vitro protein- protein interaction assays that can be used to screen chemical libraries for ARF GTPase inhibitors. In this study, we developed a fluorescence resonance energy transfer (FRET) assay and a novel in vitro colorimetric plate-based assay to detect the activation status of truncated human and Plasmodium falciparum ARF1. In the case of the FRET assay, active (GTP-bound) and inactive (GDP-bound) ARF1 could be distinguished with Z-factor values >0.5, suggesting that further development of the assay format to identify GEF and GAP inhibitors may be feasible. In the case of the colorimetric assay, robust signals could be detected and the assay was useful for detecting the activation status of ARF1. However, although the activation of ARF1 by the Sec7 domains of the BIG1 and ARNO was detectable, signals were not robust enough to employ in screening campaigns.
- Full Text:
- Date Issued: 2020
- Authors: Ntlantsana, Apelele
- Date: 2020
- Subjects: ADP ribosylation , Golgi apparatus , Guanosine triphosphatase , G proteins , Malariotherapy , Malaria -- Research , Cancer -- Chemotherapy , Malaria -- Chemotherpay
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167232 , vital:41458
- Description: ARF GTPases are key regulators of the secretory and endocytic pathways. ARF1 is involved in the secretory pathway. ARF1 has been implicated in the endoplasmic reticulum to Golgi transport, function of the Golgi apparatus and transport from the trans-Golgi network to endosomes. ARFs cycle between active GTP-bound and inactive GDP-bound conformations. GDP/GTP cycling is regulated by large families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). ARF GEFs facilitate the activation of ARFs by mediating the exchange of GDP for GTP, while ARF GAPs terminate ARF function by stimulating the hydrolysis of the terminal phosphate group of GTP. Based on existing evidence gained from gene manipulation and cell biological investigations, ARF1 has been shown to be fundamentally important for cancer cell proliferation and metastasis and may be a promising target for the development of anti-cancer drugs. Additionally, the conservation of ARFs in eukaryotic organisms leads to an interesting question of whether a single drug target can be used to target multiple diseases. In this case, can a human cancer drug employed for cancer therapy be used in anti-malarial drug therapies? To confirm the drug target status of ARFs using chemical validation experiments, novel inhibitory compounds are needed. This requires the development of complex in vitro protein- protein interaction assays that can be used to screen chemical libraries for ARF GTPase inhibitors. In this study, we developed a fluorescence resonance energy transfer (FRET) assay and a novel in vitro colorimetric plate-based assay to detect the activation status of truncated human and Plasmodium falciparum ARF1. In the case of the FRET assay, active (GTP-bound) and inactive (GDP-bound) ARF1 could be distinguished with Z-factor values >0.5, suggesting that further development of the assay format to identify GEF and GAP inhibitors may be feasible. In the case of the colorimetric assay, robust signals could be detected and the assay was useful for detecting the activation status of ARF1. However, although the activation of ARF1 by the Sec7 domains of the BIG1 and ARNO was detectable, signals were not robust enough to employ in screening campaigns.
- Full Text:
- Date Issued: 2020
A dynamics based analysis of allosteric modulation in heat shock proteins
- Authors: Penkler, David Lawrence
- Date: 2019
- Subjects: Heat shock proteins , Molecular chaperones , Allosteric regulation , Homeostasis , Protein kinases , Transcription factors , Adenosine triphosphatase , Cancer -- Chemotherapy , Molecular dynamics , High throughput screening (Drug development)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/115948 , vital:34273
- Description: The 70 kDa and 90 kDa heat shock proteins (Hsp70 and Hsp90) are molecular chaperones that play central roles in maintaining cellular homeostasis in all organisms of life with the exception of archaea. In addition to their general chaperone function in protein quality control, Hsp70 and Hsp90 cooperate in the regulation and activity of some 200 known natively folded protein clients which include protein kinases, transcription factors and receptors, many of which are implicated as key regulators of essential signal transduction pathways. Both chaperones are considered to be large multi-domain proteins that rely on ATPase activity and co-chaperone interactions to regulate their conformational cycles for peptide binding and release. The unique positioning of Hsp90 at the crossroads of several fundamental cellular pathways coupled with its known association with diverse oncogenic peptide clients has brought the molecular chaperone under increasing interest as a potential anti-cancer target that is crucially implicated with all eight hallmarks of the disease. Current orthosteric drug discovery efforts aimed at the inhibition of the ATPase domain of Hsp90 have been limited due to high levels of associated toxicity. In an effort to circumnavigate this, the combined focus of research efforts is shifting toward alternative approaches such as interference with co-chaperone binding and the allosteric inhibition/activation of the molecular chaperone. The overriding aim of this thesis was to demonstrate how the computational technique of Perturbation response scanning (PRS) coupled with all-atom molecular dynamics simulations (MD) and dynamic residue interaction network (DRN) analysis can be used as a viable strategy to efficiently scan and accurately identify allosteric control element capable of modulating the functional dynamics of a protein. In pursuit of this goal, this thesis also contributes to the current understanding of the nucleotide dependent allosteric mechanisms at play in cellular functionality of both Hsp70 and Hsp90. All-atom MD simulations of E. coli DnaK provided evidence of nucleotide driven modulation of conformational dynamics in both the catalytically active and inactive states. PRS analysis employed on these trajectories demonstrated sensitivity toward bound nucleotide and peptide substrate, and provided evidence of a putative allosterically active intermediate state between the ATPase active and inactive conformational states. Simultaneous binding of ATP and peptide substrate was found to allosterically prime the chaperone for interstate conversion regardless of the transition direction. Detailed analysis of these allosterically primed states revealed select residue sites capable of selecting a coordinate shift towards the opposite conformational state. In an effort to validate these results, the predicted allosteric hot spot sites were cross-validated with known experimental works and found to overlap with functional sites implicated in allosteric signal propagation and ATPase activation in Hsp70. This study presented for the first time, the application of PRS as a suitable diagnostic tool for the elucidation and quantification of the allosteric potential of select residues to effect functionally relevant global conformational rearrangements. The PRS methodology described in this study was packaged within the Python programming environment in the MD-TASK software suite for command-line ease of use and made freely available. Homology modelling techniques were used to address the lack of experimental structural data for the human cytosolic isoform of Hsp90 and for the first time provided accurate full-length structural models of human Hsp90α in fully-closed and partially-open conformations. Long-range all-atom MD simulations of these structures revealed nucleotide driven modulation of conformational dynamics in Hsp90. Subsequent DRN and PRS analysis of these MD trajectories allowed for the quantification and elucidation of nucleotide driven allosteric modulation in the molecular chaperone. A detailed PRS analysis revealed allosteric inter-domain coupling between the extreme terminals of the chaperone in response to external force perturbations at either domain. Furthermore PRS also identified several individual residue sites that are capable of selecting conformational rearrangements towards functionally relevant states which may be considered to be putative allosteric target sites for future drug discovery efforts Molecular docking techniques were employed to investigate the modulation of conformational dynamics of human Hsp90α in response to ligand binding interactions at two identified allosteric sites at the C-terminal. High throughput screening of a small library of natural compounds indigenous to South Africa revealed three hit compounds at these sites: Cephalostatin 17, 20(29)-Lupene-3β isoferulate and 3'-Bromorubrolide F. All-atom MD simulations on these protein-ligand complexes coupled with DRN analysis and several advanced trajectory based analysis techniques provided evidence of selective allosteric modulation of Hsp90α conformational dynamics in response to the identity and location of the bound ligands. Ligands bound at the four-helix bundle presented as putative allosteric inhibitors of Hsp90α, driving conformational dynamics in favour of dimer opening and possibly dimer separation. Meanwhile, ligand interactions at an adjacent sub-pocket located near the interface between the middle and C-terminal domains demonstrated allosteric activation of the chaperone, modulating conformational dynamics in favour of the fully-closed catalytically active conformational state. Taken together, the data presented in this thesis contributes to the understanding of allosteric modulation of conformational dynamics in Hsp70 and Hsp90, and provides a suitable platform for future biochemical and drug discovery studies. Furthermore, the molecular docking and computational identification of allosteric compounds with suitable binding affinity for allosteric sites at the CTD of human Hsp90α provide for the first time “proof-of-principle” for the use of PRS in conjunction with MD simulations and DRN analysis as a suitable method for the rapid identification of allosteric sites in proteins that can be probed by small molecule interaction. The data presented in this section could pave the way for future allosteric drug discovery studies for the treatment of Hsp90 associated pathologies.
- Full Text:
- Date Issued: 2019
- Authors: Penkler, David Lawrence
- Date: 2019
- Subjects: Heat shock proteins , Molecular chaperones , Allosteric regulation , Homeostasis , Protein kinases , Transcription factors , Adenosine triphosphatase , Cancer -- Chemotherapy , Molecular dynamics , High throughput screening (Drug development)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/115948 , vital:34273
- Description: The 70 kDa and 90 kDa heat shock proteins (Hsp70 and Hsp90) are molecular chaperones that play central roles in maintaining cellular homeostasis in all organisms of life with the exception of archaea. In addition to their general chaperone function in protein quality control, Hsp70 and Hsp90 cooperate in the regulation and activity of some 200 known natively folded protein clients which include protein kinases, transcription factors and receptors, many of which are implicated as key regulators of essential signal transduction pathways. Both chaperones are considered to be large multi-domain proteins that rely on ATPase activity and co-chaperone interactions to regulate their conformational cycles for peptide binding and release. The unique positioning of Hsp90 at the crossroads of several fundamental cellular pathways coupled with its known association with diverse oncogenic peptide clients has brought the molecular chaperone under increasing interest as a potential anti-cancer target that is crucially implicated with all eight hallmarks of the disease. Current orthosteric drug discovery efforts aimed at the inhibition of the ATPase domain of Hsp90 have been limited due to high levels of associated toxicity. In an effort to circumnavigate this, the combined focus of research efforts is shifting toward alternative approaches such as interference with co-chaperone binding and the allosteric inhibition/activation of the molecular chaperone. The overriding aim of this thesis was to demonstrate how the computational technique of Perturbation response scanning (PRS) coupled with all-atom molecular dynamics simulations (MD) and dynamic residue interaction network (DRN) analysis can be used as a viable strategy to efficiently scan and accurately identify allosteric control element capable of modulating the functional dynamics of a protein. In pursuit of this goal, this thesis also contributes to the current understanding of the nucleotide dependent allosteric mechanisms at play in cellular functionality of both Hsp70 and Hsp90. All-atom MD simulations of E. coli DnaK provided evidence of nucleotide driven modulation of conformational dynamics in both the catalytically active and inactive states. PRS analysis employed on these trajectories demonstrated sensitivity toward bound nucleotide and peptide substrate, and provided evidence of a putative allosterically active intermediate state between the ATPase active and inactive conformational states. Simultaneous binding of ATP and peptide substrate was found to allosterically prime the chaperone for interstate conversion regardless of the transition direction. Detailed analysis of these allosterically primed states revealed select residue sites capable of selecting a coordinate shift towards the opposite conformational state. In an effort to validate these results, the predicted allosteric hot spot sites were cross-validated with known experimental works and found to overlap with functional sites implicated in allosteric signal propagation and ATPase activation in Hsp70. This study presented for the first time, the application of PRS as a suitable diagnostic tool for the elucidation and quantification of the allosteric potential of select residues to effect functionally relevant global conformational rearrangements. The PRS methodology described in this study was packaged within the Python programming environment in the MD-TASK software suite for command-line ease of use and made freely available. Homology modelling techniques were used to address the lack of experimental structural data for the human cytosolic isoform of Hsp90 and for the first time provided accurate full-length structural models of human Hsp90α in fully-closed and partially-open conformations. Long-range all-atom MD simulations of these structures revealed nucleotide driven modulation of conformational dynamics in Hsp90. Subsequent DRN and PRS analysis of these MD trajectories allowed for the quantification and elucidation of nucleotide driven allosteric modulation in the molecular chaperone. A detailed PRS analysis revealed allosteric inter-domain coupling between the extreme terminals of the chaperone in response to external force perturbations at either domain. Furthermore PRS also identified several individual residue sites that are capable of selecting conformational rearrangements towards functionally relevant states which may be considered to be putative allosteric target sites for future drug discovery efforts Molecular docking techniques were employed to investigate the modulation of conformational dynamics of human Hsp90α in response to ligand binding interactions at two identified allosteric sites at the C-terminal. High throughput screening of a small library of natural compounds indigenous to South Africa revealed three hit compounds at these sites: Cephalostatin 17, 20(29)-Lupene-3β isoferulate and 3'-Bromorubrolide F. All-atom MD simulations on these protein-ligand complexes coupled with DRN analysis and several advanced trajectory based analysis techniques provided evidence of selective allosteric modulation of Hsp90α conformational dynamics in response to the identity and location of the bound ligands. Ligands bound at the four-helix bundle presented as putative allosteric inhibitors of Hsp90α, driving conformational dynamics in favour of dimer opening and possibly dimer separation. Meanwhile, ligand interactions at an adjacent sub-pocket located near the interface between the middle and C-terminal domains demonstrated allosteric activation of the chaperone, modulating conformational dynamics in favour of the fully-closed catalytically active conformational state. Taken together, the data presented in this thesis contributes to the understanding of allosteric modulation of conformational dynamics in Hsp70 and Hsp90, and provides a suitable platform for future biochemical and drug discovery studies. Furthermore, the molecular docking and computational identification of allosteric compounds with suitable binding affinity for allosteric sites at the CTD of human Hsp90α provide for the first time “proof-of-principle” for the use of PRS in conjunction with MD simulations and DRN analysis as a suitable method for the rapid identification of allosteric sites in proteins that can be probed by small molecule interaction. The data presented in this section could pave the way for future allosteric drug discovery studies for the treatment of Hsp90 associated pathologies.
- Full Text:
- Date Issued: 2019
The development of high-throughput assays to screen for potential anticancer and antimalarial compounds that target ADP-ribosylation factor 6 and its signalling machineries
- Authors: Khan, Farrah Dilshaad
- Date: 2019
- Subjects: ADP-ribosylation , Proteins -- Metabolism , Nucleoproteins , Malaria -- Chemotherapy , Cancer -- Chemotherapy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92952 , vital:30810
- Description: ADP-ribosylation factors (Arfs) are small GTP-binding proteins that cycle between active GTP-bound forms and inactive GDP-bound forms. GDP/GTP cycling is regulated by large families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). ArfGEFs activate Arfs by mediating the exchange of GDP for GTP, while ArfGAPs terminate Arf function by stimulating the hydrolysis of the terminal phosphate group of GTP. Arf6 is a major regulator of endocytic trafficking and reorganization of the actin cytoskeleton in eukaryotic organisms. Owing to its participation in wide range of fundamentally distinct cellular processes, Arf6 may be a drug target for cancer and malaria amongst other diseases. As with cancer cells, rapid growth and viability of eukaryotic pathogens likely places a heavy burden on their endocytic pathways and a critical reliance on Arf6 activity. A putative malarial homolog of Arf6 (PfArf6) localises to numerous puncta along the periphery of the parasite in the mature trophozoite life stage of the parasite (T. Swart, MSc dissertation). Owing to highly inefficient parasite transfection procedures and a relative shortage of well described and validated parasite organelle markers, the possible functions of PfArf6 were explored using HeLa cells as a surrogate model for parasites by fluorescence microscopy of cells transfected with GFP-tagged PfArf6. Partial co-localisation was observed with the mammalian markers HsArf6 and LC3, which suggested possible roles in Arf6-dependent endocytosis and autophagy, respectively. While these possible roles are currently under investigation in parasites, an overall long-term goal which was initiated in this study was to determine whether PfArf6 is a valid drug target. To chemically validate PfArf6 as a drug target, a potent inhibitor needs to be identified. This requires the development of assays that may be employed for high-throughput screening of compound libraries. To support this goal, a novel plate-based assay was developed using human Arf6. The assay relies on the selective binding of an Arf effector protein domain (GGA3) fused to glutathione-S-transferase (GST), to His-tagged Arf6 immobilised on a nickel-coated plate. The assay format was developed and could robustly distinguish HsArf6-GDP (inactive) from HsArf6-GTP (active). Furthermore, it could be employed to detect the deactivation of Arf6 by ArfGAP1-stimualted GTP hydrolysis, but not Arf6 activation by ARNO-stimulated GDP/GTP exchange (ARNO is an ArfGEF). The ArfGAP1 deactivation assay was chemically validated using a known ArfGAP inhibitor, QS11. An improved assay was developed that employs JIP4 as an Arf6-specific binding partner instead of GGA3. In addition to superior performance, the alternative assay format could potentially be exploited for cancer drug discovery, since Arf6-JIP4 interaction has been implicated in cancer cell invasion and metastasis. Both assays may be employed to explore alternative ArfGEFs and ArfGAPs that act on Arf6 and contribute to the advancement of cancer. In parallel experiments, where development of PfArf6 assays was the focus, several issues arose. Firstly, we could not prepare GDP- and GTP-bound forms of PfArf6 since EDTA-mediated nucleotide exchange appeared to irreversibly destabilise the protein. However, PfArf6 activation (i.e. the preparation of PfArf6-GTP) was possible when mediated by ARNO and assessed by tryptophan fluorescence kinetic assays, suggesting that PfArf6 may be expressed in GDP-bound form in E. coli. As with human Arf6, ARNO-mediated GDP/GTP exchange on PfArf6 was not detectable in the immobilised PfArf6-GGA interaction GST assay format. However, a more sensitive assay was developed which relies on the use of nickel-horseradish peroxidase to detect the binding of His-tagged PfArf6 to JIP4-GST immobilised on glutathione plates and could detect ARNO-mediated PfArf6 activation. Since we could not prepare PfArf6-GTP (that did not rely on the presence of the ArfGEF, ARNO), malarial ArfGAP deactivation studies were conducted using PfArf1 instead of PfArf6 in the GGA-GST interaction assay. Both PfArfGAP1and PfArfGAP2 stimulated GTP hydrolysis by PfArf1, but only the former was inhibited by the standard human ArfGAP inhibitor, QS11. The development of these simple, cost-effective assays can be used in the high-throughput screening of novel anticancer and antimalarial compounds that target Arf signalling machineries. In theory, the assay could be extended as a tool to identify novel inhibitors of the multitude of Arfs, ArfGEFs and ArfGAPs originating from any organism and hence has broad clinical significance.
- Full Text:
- Date Issued: 2019
- Authors: Khan, Farrah Dilshaad
- Date: 2019
- Subjects: ADP-ribosylation , Proteins -- Metabolism , Nucleoproteins , Malaria -- Chemotherapy , Cancer -- Chemotherapy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92952 , vital:30810
- Description: ADP-ribosylation factors (Arfs) are small GTP-binding proteins that cycle between active GTP-bound forms and inactive GDP-bound forms. GDP/GTP cycling is regulated by large families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). ArfGEFs activate Arfs by mediating the exchange of GDP for GTP, while ArfGAPs terminate Arf function by stimulating the hydrolysis of the terminal phosphate group of GTP. Arf6 is a major regulator of endocytic trafficking and reorganization of the actin cytoskeleton in eukaryotic organisms. Owing to its participation in wide range of fundamentally distinct cellular processes, Arf6 may be a drug target for cancer and malaria amongst other diseases. As with cancer cells, rapid growth and viability of eukaryotic pathogens likely places a heavy burden on their endocytic pathways and a critical reliance on Arf6 activity. A putative malarial homolog of Arf6 (PfArf6) localises to numerous puncta along the periphery of the parasite in the mature trophozoite life stage of the parasite (T. Swart, MSc dissertation). Owing to highly inefficient parasite transfection procedures and a relative shortage of well described and validated parasite organelle markers, the possible functions of PfArf6 were explored using HeLa cells as a surrogate model for parasites by fluorescence microscopy of cells transfected with GFP-tagged PfArf6. Partial co-localisation was observed with the mammalian markers HsArf6 and LC3, which suggested possible roles in Arf6-dependent endocytosis and autophagy, respectively. While these possible roles are currently under investigation in parasites, an overall long-term goal which was initiated in this study was to determine whether PfArf6 is a valid drug target. To chemically validate PfArf6 as a drug target, a potent inhibitor needs to be identified. This requires the development of assays that may be employed for high-throughput screening of compound libraries. To support this goal, a novel plate-based assay was developed using human Arf6. The assay relies on the selective binding of an Arf effector protein domain (GGA3) fused to glutathione-S-transferase (GST), to His-tagged Arf6 immobilised on a nickel-coated plate. The assay format was developed and could robustly distinguish HsArf6-GDP (inactive) from HsArf6-GTP (active). Furthermore, it could be employed to detect the deactivation of Arf6 by ArfGAP1-stimualted GTP hydrolysis, but not Arf6 activation by ARNO-stimulated GDP/GTP exchange (ARNO is an ArfGEF). The ArfGAP1 deactivation assay was chemically validated using a known ArfGAP inhibitor, QS11. An improved assay was developed that employs JIP4 as an Arf6-specific binding partner instead of GGA3. In addition to superior performance, the alternative assay format could potentially be exploited for cancer drug discovery, since Arf6-JIP4 interaction has been implicated in cancer cell invasion and metastasis. Both assays may be employed to explore alternative ArfGEFs and ArfGAPs that act on Arf6 and contribute to the advancement of cancer. In parallel experiments, where development of PfArf6 assays was the focus, several issues arose. Firstly, we could not prepare GDP- and GTP-bound forms of PfArf6 since EDTA-mediated nucleotide exchange appeared to irreversibly destabilise the protein. However, PfArf6 activation (i.e. the preparation of PfArf6-GTP) was possible when mediated by ARNO and assessed by tryptophan fluorescence kinetic assays, suggesting that PfArf6 may be expressed in GDP-bound form in E. coli. As with human Arf6, ARNO-mediated GDP/GTP exchange on PfArf6 was not detectable in the immobilised PfArf6-GGA interaction GST assay format. However, a more sensitive assay was developed which relies on the use of nickel-horseradish peroxidase to detect the binding of His-tagged PfArf6 to JIP4-GST immobilised on glutathione plates and could detect ARNO-mediated PfArf6 activation. Since we could not prepare PfArf6-GTP (that did not rely on the presence of the ArfGEF, ARNO), malarial ArfGAP deactivation studies were conducted using PfArf1 instead of PfArf6 in the GGA-GST interaction assay. Both PfArfGAP1and PfArfGAP2 stimulated GTP hydrolysis by PfArf1, but only the former was inhibited by the standard human ArfGAP inhibitor, QS11. The development of these simple, cost-effective assays can be used in the high-throughput screening of novel anticancer and antimalarial compounds that target Arf signalling machineries. In theory, the assay could be extended as a tool to identify novel inhibitors of the multitude of Arfs, ArfGEFs and ArfGAPs originating from any organism and hence has broad clinical significance.
- Full Text:
- Date Issued: 2019
Characterisation, antimalarial and biological activities of secondary metabolites from leaves of anonidium mannii
- Authors: Makoni, Pfungwa Gervase
- Date: 2017
- Subjects: Anonidium mannii -- Therapeutic use , Botanical chemistry , Annonaceae -- Therapeutic use , Apocynaceae -- Therapeutic use , Malaria -- Chemotherapy , Tuberculosis -- Chemotherapy , Bacterial diseases -- Chemotherapy , Cancer -- Chemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4797 , vital:20725
- Description: Anonidium mannii is a plant of the Annonaceae genus which is used traditionally in Africa for the treatment of gonorrhoea, malaria, cancer, skin inflammation and dysentery. In this study we will evaluate antimalarial, antifungal, anti - tuberculosis, antibacterial activities and cytotoxicity of different fractions in order to provide a scientific rationale for the traditional use of Anonidium mannii as well as provide possible novel drugs in the treatment of multi drug resistant strains of parasites and bacteria. Extracts from dried leaves were obtained by using solvent extraction and different fractions obtained using column chromatography eluted with solvents of varying polarities to obtain a wide range of metabolites. The antimalarial activity of the various fractions and some pure compounds was evaluated using plasmodium lactate dehydrogenase (pLDH) assay. Cytotoxicity was evaluated using HeLa cells while anti – tuberculosis assay was evaluated using the green fluorescent protein. Antibacterial activity of the extracts was evaluated using micro-dilution assay against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria and Gram-negative (Escherichia coli and Salmonella typhi) bacteria. Antifungal activity was evaluated against Candida albicans. The antimalarial assays yielded some fractions with promising IC50 values. The selected fractions yielded activities ranging between 0.73 μg/mL and 20.23 μg/mL. The fraction with the best activity was obtained from a hexane/ethyl acetate fraction. AM1C, a cholestane, showed the best activity from the pure metabolites that were screened. AM3C, stigmasterol, a pure compound gave the best antifungal activity with an MIC of 0.063 μg/mL. AM9C another pure compound (sterol) showed the best activity against S. typhi with a value of 0.031 μg/mL. AM2C a pure compound showed an activity of 0.063 μg/mL against E. faecalis. The best cytotoxicity was demonstrated by the fraction C2AM3P with a cell viability of 7.1 ± 0.2 % while AM1C had a viability of 20.2 ± 1.2 %. Several pure metabolites were isolated and four of these were positively identified as steroids. Of these steroids the structure of three novel metabolites from A. mannii was deduced. The study showed promising antibacterial, antifungal, anti – tuberculosis, antimalarial and anticancer activity of A. mannii. These results validate the use of A. manni against cancer, skin inflammation which is caused by fungus, malaria and bacterial diseases.
- Full Text:
- Date Issued: 2017
- Authors: Makoni, Pfungwa Gervase
- Date: 2017
- Subjects: Anonidium mannii -- Therapeutic use , Botanical chemistry , Annonaceae -- Therapeutic use , Apocynaceae -- Therapeutic use , Malaria -- Chemotherapy , Tuberculosis -- Chemotherapy , Bacterial diseases -- Chemotherapy , Cancer -- Chemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4797 , vital:20725
- Description: Anonidium mannii is a plant of the Annonaceae genus which is used traditionally in Africa for the treatment of gonorrhoea, malaria, cancer, skin inflammation and dysentery. In this study we will evaluate antimalarial, antifungal, anti - tuberculosis, antibacterial activities and cytotoxicity of different fractions in order to provide a scientific rationale for the traditional use of Anonidium mannii as well as provide possible novel drugs in the treatment of multi drug resistant strains of parasites and bacteria. Extracts from dried leaves were obtained by using solvent extraction and different fractions obtained using column chromatography eluted with solvents of varying polarities to obtain a wide range of metabolites. The antimalarial activity of the various fractions and some pure compounds was evaluated using plasmodium lactate dehydrogenase (pLDH) assay. Cytotoxicity was evaluated using HeLa cells while anti – tuberculosis assay was evaluated using the green fluorescent protein. Antibacterial activity of the extracts was evaluated using micro-dilution assay against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria and Gram-negative (Escherichia coli and Salmonella typhi) bacteria. Antifungal activity was evaluated against Candida albicans. The antimalarial assays yielded some fractions with promising IC50 values. The selected fractions yielded activities ranging between 0.73 μg/mL and 20.23 μg/mL. The fraction with the best activity was obtained from a hexane/ethyl acetate fraction. AM1C, a cholestane, showed the best activity from the pure metabolites that were screened. AM3C, stigmasterol, a pure compound gave the best antifungal activity with an MIC of 0.063 μg/mL. AM9C another pure compound (sterol) showed the best activity against S. typhi with a value of 0.031 μg/mL. AM2C a pure compound showed an activity of 0.063 μg/mL against E. faecalis. The best cytotoxicity was demonstrated by the fraction C2AM3P with a cell viability of 7.1 ± 0.2 % while AM1C had a viability of 20.2 ± 1.2 %. Several pure metabolites were isolated and four of these were positively identified as steroids. Of these steroids the structure of three novel metabolites from A. mannii was deduced. The study showed promising antibacterial, antifungal, anti – tuberculosis, antimalarial and anticancer activity of A. mannii. These results validate the use of A. manni against cancer, skin inflammation which is caused by fungus, malaria and bacterial diseases.
- Full Text:
- Date Issued: 2017
Phthalocyanine-nanoparticle conjugates for photodynamic therapy of cancer and phototransformation of organic pollutants
- Authors: Khoza, Phindile Brenda
- Date: 2015
- Subjects: Phthalocyanines , Nanoparticles , Photochemotherapy , Cancer -- Chemotherapy , Zinc oxide , Photocatalysis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4538 , http://hdl.handle.net/10962/d1017918
- Description: The synthesis and extensive spectroscopical characterization of novel phthalocyanines are reported. The new compounds were characterized by elemental analysis, FT-IR, ¹HNMR, mass spectrometry and UV–Vis spectroscopy. The new phthalocyanines showed remarkable photophysicochemical behaviour. The novel phthalocyanines were then conjugated to nanoparticles, silver and ZnO. The coupling of the novel Pcs to nanoparticles was through covalent bonding and ligand exchange. These conjugates were supported onto electrospun polystyrene fibers and chitosan microbeads for use as photocatalysts. The efficiency of the immobilized Pcs and Pc-nanoparticles was assessed by the phototrasfromation of organic pollutants, methyl orange and Rhodamine 6G as model dyes. Upon conjugating phthalocyanines to nanoparticles, there was a great increase in the rate of photodegradation of the model dyes. The photodynamic activity of the novel phthalocyanines upon conjugating to nanoparticles and selected targeting agents is also reported. The targeting agents employed in this study are folic acid and polylysine. Conjugating the phthalocyanines to folic acid or polylysine improved the solubility of the phthalocyanines in aqueous media. The potency of the conjugates was investigated on breast (MCF-7), prostate and melanoma cancer cell lines. The phthalocyanines showed no toxicity in the absence of light. However, upon illumination, a concentration dependent cellular decrease was observed.
- Full Text:
- Date Issued: 2015
- Authors: Khoza, Phindile Brenda
- Date: 2015
- Subjects: Phthalocyanines , Nanoparticles , Photochemotherapy , Cancer -- Chemotherapy , Zinc oxide , Photocatalysis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4538 , http://hdl.handle.net/10962/d1017918
- Description: The synthesis and extensive spectroscopical characterization of novel phthalocyanines are reported. The new compounds were characterized by elemental analysis, FT-IR, ¹HNMR, mass spectrometry and UV–Vis spectroscopy. The new phthalocyanines showed remarkable photophysicochemical behaviour. The novel phthalocyanines were then conjugated to nanoparticles, silver and ZnO. The coupling of the novel Pcs to nanoparticles was through covalent bonding and ligand exchange. These conjugates were supported onto electrospun polystyrene fibers and chitosan microbeads for use as photocatalysts. The efficiency of the immobilized Pcs and Pc-nanoparticles was assessed by the phototrasfromation of organic pollutants, methyl orange and Rhodamine 6G as model dyes. Upon conjugating phthalocyanines to nanoparticles, there was a great increase in the rate of photodegradation of the model dyes. The photodynamic activity of the novel phthalocyanines upon conjugating to nanoparticles and selected targeting agents is also reported. The targeting agents employed in this study are folic acid and polylysine. Conjugating the phthalocyanines to folic acid or polylysine improved the solubility of the phthalocyanines in aqueous media. The potency of the conjugates was investigated on breast (MCF-7), prostate and melanoma cancer cell lines. The phthalocyanines showed no toxicity in the absence of light. However, upon illumination, a concentration dependent cellular decrease was observed.
- Full Text:
- Date Issued: 2015
A bioinorganic investigation of some metal complexes of the Schiff base, N,N'-bis(3-methoxysalicylaldimine)propan-2-ol
- Authors: Mopp, Estelle
- Date: 2010 , 2012-04-13
- Subjects: Schiff bases , Bioinorganic chemistry , Metal complexes , Transition metal complexes , Transition metals , Cancer -- Chemotherapy , Ligands -- Toxicity , Antineoplastic agents
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4413 , http://hdl.handle.net/10962/d1006768 , Schiff bases , Bioinorganic chemistry , Metal complexes , Transition metal complexes , Transition metals , Cancer -- Chemotherapy , Ligands -- Toxicity , Antineoplastic agents
- Description: This thesis includes the synthesis, characterisation, antioxidant and antimicrobial activities of Cu(II)-, Co(II)- and Co(III) complexes with N,N'-bis(3- methoxysalicylaldimine)propan-2-ol, 2-OH-oVANPN. The Schiff base ligand, 2-OHoVANPN, is derived from o-vanillin and 1,3-diaminopropan-2-ol. The o-vanillin condensed with 1,3-diaminopropan-2-ol in a 2:1 molar ratio yields this potential tetraor pentadentate ligand. The complexes synthesized are tetra (or penta or hexa) coordinated. Formation of the complexes is symbolized as follows:- MX₂ + 2-OH-oVANPN (2:1) -> [M(2-OH-oVANPN)Xn] + HnX MX₂ + 2-OH-oVANPN (2:1) -> [Mn(2-OH-oVANPN)OH] + H₂X₂ MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M(1:1)X₂] MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M₃(1:1)X₄] M = Cu(II), Co(II) or Co(III); X = Cl; n = 1, 2. Their structural features have been deduced from their elemental analytical data, IR spectral data, and electronic spectral data. With the exception of {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆}(A4), the Cu(II) complexes were monomeric with 2-OH-oVANPN acting as a tetradentate ligand. A binuclear Co(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), was synthesised and the rest of the Co(II) and Co(III) complexes were monomeric with chloride ions coordinating to the metal centre in some cases. Electronic data suggest that the cobalt(II) complexes have octahedral geometries and the copper(II) complexes have square planar structures – Co(III) is likely to be octahedral. Thermal analyses, which included the copper-block-method for determining sublimation temperatures, revealed that some copper(II) and cobalt(II) complexes are hygroscopic and sublime at 200 °C and below. DSC analyses of the Cu(II) complexes gave exotherms around 300 °C for complexes K[Cu(C₁₉H₂₀N₂O₅)(OH)]·2H₂O (A1) and [Cu(C₁₁H15N₂O₃)(Cl)₂]·2H₂O (A2) and above 400 °C for [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3) and {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4). Antioxidant studies were carried out against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·). The cobalt(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), which was synthesized in the presence of KOH, had no antioxidant activity, whilst the other cobalt(II) complexes, [Co(C₁₇H₁₇N₂O₅(Cl))]·1½H₂O (B2), [Co(C₁₉H₂₂N₂O₅) (Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B4), which were synthesised in the absence of KOH, demonstrated antioxidant activity. The latter complexes are candidates for cancer cell line testing, while [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3), {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4), [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) may show anticancer activity through possible hydrolysis products. Most of the complexes synthesized displayed antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans. The results indicated that complexes [Cu(C₁₁H₁₆N₂O₃)(Cl)₂](A3), [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) are active against the Gram-negative Ps. aeruginosa and that the ligand, 2-OH-oVANPN, did not have any activity. The same trend was observed with 2-OH-oVANPN, {Cu₃(C₁₁H₁₄N₂O₃)(Cl)4(H₂O)₆} (A4) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) against the Gram-positive S. aureus. As for activity against E. coli and C. albicans, some complexes showed more activity than the ligand. There is an observed trend here that the metal complexes are more active (toxic) than the corresponding ligand, which is in agreement with Tweedy’s chelation theory.
- Full Text:
- Date Issued: 2010
- Authors: Mopp, Estelle
- Date: 2010 , 2012-04-13
- Subjects: Schiff bases , Bioinorganic chemistry , Metal complexes , Transition metal complexes , Transition metals , Cancer -- Chemotherapy , Ligands -- Toxicity , Antineoplastic agents
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4413 , http://hdl.handle.net/10962/d1006768 , Schiff bases , Bioinorganic chemistry , Metal complexes , Transition metal complexes , Transition metals , Cancer -- Chemotherapy , Ligands -- Toxicity , Antineoplastic agents
- Description: This thesis includes the synthesis, characterisation, antioxidant and antimicrobial activities of Cu(II)-, Co(II)- and Co(III) complexes with N,N'-bis(3- methoxysalicylaldimine)propan-2-ol, 2-OH-oVANPN. The Schiff base ligand, 2-OHoVANPN, is derived from o-vanillin and 1,3-diaminopropan-2-ol. The o-vanillin condensed with 1,3-diaminopropan-2-ol in a 2:1 molar ratio yields this potential tetraor pentadentate ligand. The complexes synthesized are tetra (or penta or hexa) coordinated. Formation of the complexes is symbolized as follows:- MX₂ + 2-OH-oVANPN (2:1) -> [M(2-OH-oVANPN)Xn] + HnX MX₂ + 2-OH-oVANPN (2:1) -> [Mn(2-OH-oVANPN)OH] + H₂X₂ MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M(1:1)X₂] MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M₃(1:1)X₄] M = Cu(II), Co(II) or Co(III); X = Cl; n = 1, 2. Their structural features have been deduced from their elemental analytical data, IR spectral data, and electronic spectral data. With the exception of {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆}(A4), the Cu(II) complexes were monomeric with 2-OH-oVANPN acting as a tetradentate ligand. A binuclear Co(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), was synthesised and the rest of the Co(II) and Co(III) complexes were monomeric with chloride ions coordinating to the metal centre in some cases. Electronic data suggest that the cobalt(II) complexes have octahedral geometries and the copper(II) complexes have square planar structures – Co(III) is likely to be octahedral. Thermal analyses, which included the copper-block-method for determining sublimation temperatures, revealed that some copper(II) and cobalt(II) complexes are hygroscopic and sublime at 200 °C and below. DSC analyses of the Cu(II) complexes gave exotherms around 300 °C for complexes K[Cu(C₁₉H₂₀N₂O₅)(OH)]·2H₂O (A1) and [Cu(C₁₁H15N₂O₃)(Cl)₂]·2H₂O (A2) and above 400 °C for [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3) and {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4). Antioxidant studies were carried out against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·). The cobalt(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), which was synthesized in the presence of KOH, had no antioxidant activity, whilst the other cobalt(II) complexes, [Co(C₁₇H₁₇N₂O₅(Cl))]·1½H₂O (B2), [Co(C₁₉H₂₂N₂O₅) (Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B4), which were synthesised in the absence of KOH, demonstrated antioxidant activity. The latter complexes are candidates for cancer cell line testing, while [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3), {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4), [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) may show anticancer activity through possible hydrolysis products. Most of the complexes synthesized displayed antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans. The results indicated that complexes [Cu(C₁₁H₁₆N₂O₃)(Cl)₂](A3), [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) are active against the Gram-negative Ps. aeruginosa and that the ligand, 2-OH-oVANPN, did not have any activity. The same trend was observed with 2-OH-oVANPN, {Cu₃(C₁₁H₁₄N₂O₃)(Cl)4(H₂O)₆} (A4) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) against the Gram-positive S. aureus. As for activity against E. coli and C. albicans, some complexes showed more activity than the ligand. There is an observed trend here that the metal complexes are more active (toxic) than the corresponding ligand, which is in agreement with Tweedy’s chelation theory.
- Full Text:
- Date Issued: 2010
A combination of platinum anticancer drugs and mangiferin causes increased efficacy in cancer cell lines
- Authors: Du Plessis-Stoman, Debbie
- Date: 2010
- Subjects: Cancer -- Chemotherapy , Antineoplastic agents , Platinum compounds -- Therapeutic use , Cancer cells
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10338 , http://hdl.handle.net/10948/d1016160
- Description: This thesis mainly deals with some biochemical aspects regarding the efficacy of novel platinum anticancer compounds alone and in combination with mangiferin, as part of a broader study in which both chemistry and biochemistry are involved. Various novel diamine and N-S donor chelate compounds of platinum II and IV have been developed in which factors such as stereochemistry, ligand exchange rate and biocompatibility were considered as additional parameters. In the first order testing, each of these compounds was tested with reference to their “killing” potential by comparing their rate of killing, over a period of 48 hours with those of cisplatin and oxaliplatin. Numerous novel compounds were tested in this way, using the MTT cell viability assay and the three cancer cell lines MCF7, HT29 and HeLa. Although only a few could be regarded as equal to or even better than cisplatin, CPA7 and oxaliplatin, the testing of these compounds on cancer cells provided useful knowledge for the further development of novel compounds. Three of the better compounds, namely Yol 25, Yol 29.1 and Mar 4.1.4 were selected for further studies, together with oxaliplatin and CPA7 as positive controls, to obtain more detailed knowledge of their anticancer action, both alone and when applied in combination with mangiferin. In addition to the above, resistant cells were produced for each of the three different cell lines tested and all the selected compounds, both in the presence and absence of mangiferin. The effects of these treatments on the activation of NFĸB when applied to normal and resistant cell lines were also investigated. All the compounds induced apoptosis in the cell lines tested as well as alter the DNA cycle at one or more phase. Additionally, combination of these compounds with mangiferin enhanced the above-mentioned effects. Mangiferin decreases the IC50 values of the platinum drugs by up to 3.4 times and, although mangiferin alone did not induce cell cycle arrest, the presence of mangiferin in combination with oxaliplatin and Yol 25 shows an earlier and greatly enhanced delay in the S-phase, while cells treated with CPA7, Yol 29.1 and Mar 4.1.4 in combination with mangiferin showed a later, but greatly enhanced delay in the S-phase. It was also found that mangiferin acts as an NFĸB inhibitor when applied in combination with these drugs, which, in turn, reduces the occurrence of resistance in the cell lines. Resistance to oxaliplatin was counteracted by the combination with mangiferin in HeLa and HT29, but not in MCF7 cells, while resistance to CPA7 was only counteracted in the MCF7 cell line. Yol 25 and Mar 4.1.4 did not seem to induce resistance in HeLa and MCF7 cells, but did in HT29 cells, whereas Yol 29.1 caused resistance in HeLa and HT29 cells, but not in MCF7 cells. Finally, an effort was made to evaluate the different compounds by comparing them with respect to their properties relating to anticancer action with and without the addition of mangiferin.
- Full Text:
- Date Issued: 2010
- Authors: Du Plessis-Stoman, Debbie
- Date: 2010
- Subjects: Cancer -- Chemotherapy , Antineoplastic agents , Platinum compounds -- Therapeutic use , Cancer cells
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10338 , http://hdl.handle.net/10948/d1016160
- Description: This thesis mainly deals with some biochemical aspects regarding the efficacy of novel platinum anticancer compounds alone and in combination with mangiferin, as part of a broader study in which both chemistry and biochemistry are involved. Various novel diamine and N-S donor chelate compounds of platinum II and IV have been developed in which factors such as stereochemistry, ligand exchange rate and biocompatibility were considered as additional parameters. In the first order testing, each of these compounds was tested with reference to their “killing” potential by comparing their rate of killing, over a period of 48 hours with those of cisplatin and oxaliplatin. Numerous novel compounds were tested in this way, using the MTT cell viability assay and the three cancer cell lines MCF7, HT29 and HeLa. Although only a few could be regarded as equal to or even better than cisplatin, CPA7 and oxaliplatin, the testing of these compounds on cancer cells provided useful knowledge for the further development of novel compounds. Three of the better compounds, namely Yol 25, Yol 29.1 and Mar 4.1.4 were selected for further studies, together with oxaliplatin and CPA7 as positive controls, to obtain more detailed knowledge of their anticancer action, both alone and when applied in combination with mangiferin. In addition to the above, resistant cells were produced for each of the three different cell lines tested and all the selected compounds, both in the presence and absence of mangiferin. The effects of these treatments on the activation of NFĸB when applied to normal and resistant cell lines were also investigated. All the compounds induced apoptosis in the cell lines tested as well as alter the DNA cycle at one or more phase. Additionally, combination of these compounds with mangiferin enhanced the above-mentioned effects. Mangiferin decreases the IC50 values of the platinum drugs by up to 3.4 times and, although mangiferin alone did not induce cell cycle arrest, the presence of mangiferin in combination with oxaliplatin and Yol 25 shows an earlier and greatly enhanced delay in the S-phase, while cells treated with CPA7, Yol 29.1 and Mar 4.1.4 in combination with mangiferin showed a later, but greatly enhanced delay in the S-phase. It was also found that mangiferin acts as an NFĸB inhibitor when applied in combination with these drugs, which, in turn, reduces the occurrence of resistance in the cell lines. Resistance to oxaliplatin was counteracted by the combination with mangiferin in HeLa and HT29, but not in MCF7 cells, while resistance to CPA7 was only counteracted in the MCF7 cell line. Yol 25 and Mar 4.1.4 did not seem to induce resistance in HeLa and MCF7 cells, but did in HT29 cells, whereas Yol 29.1 caused resistance in HeLa and HT29 cells, but not in MCF7 cells. Finally, an effort was made to evaluate the different compounds by comparing them with respect to their properties relating to anticancer action with and without the addition of mangiferin.
- Full Text:
- Date Issued: 2010
Advances in platinum-amine chemotherapeutic agents : their chemistry and applicationc
- Authors: Jaganath, Yatish
- Date: 2009
- Subjects: Coordination compounds , Antineoplastic antibiotics , Cancer -- Chemotherapy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10446 , http://hdl.handle.net/10948/d1021222
- Description: The research conducted in this study focussed on advancing the knowledge database of diamineplatinum complexes on two frontiers: 1) the development of novel anticancer complexes, and 2) improvements in their synthetic chemistry. Novel square-planar dichloro and oxalato platinum(II) complexes were synthesized as potential anticancer agents in accordance with a comprehensive set of factors identified as being significant in optimizing such action. The nonleaving ligands consisted of asymmetric chelating chiral diamines of the form 1- (1-R-imidazol-2yl)(R')methanamine (R representing methyl, butyl and R' methyl, phenyl). The complexes were characterized by a host of spectral, thermal and crystallographic techniques. In addition, the stabilities of the complexes were monitored in aqueous and saline solutions. Cytotoxicity screening on three cultured cancer cell lines (MCF-7, HeLa and HT29) indicated the compounds, present as their respective racemates, to have rather modest activities relative to cisplatin; with complexes having the smallest substituents, R,R' = methyl, being most active. In recognition of the limitations of traditional silver-based syntheses of oxalatoplatinum(II) complexes, innovative non-silver methods were developed using the well known cancer drug, oxaliplatin, (trans-R,R-1,2- diaminocyclohexane)oxalatoplatinum(II), as a prototype. These involved direct ligand exchange reactions of the dichloro precursor, (trans-R,R-1,2- diaminocyclohexane)dichloroplatinum(II), with tetrabutylammonium oxalate in essentially non-aqueous solvents. A 90:10 mixture of isoamyl alcohol (3-methyl- 1-butanol):water, proved to be a promising solvent, enabling the recovery of pure oxaliplatin (~98 percent) after 9 hours at 88 °C in yields of up to 86 percent. In light of the perceived unique mode of anticancer action available to mononitroplatinum(IV) complexes (i.e. their STAT3-binding potential), octahedral diamineoxalatoplatinum(IV) complexes containing axially-coordinated nitro and halo co-ligands were synthesized and extensively characterized. Electrochemical studies revealed trends in reduction potential which could be correlated to structural / chemical traits of the coordinated diamine and axial ligands. The similarities of the determined cytotoxicities of the platinum(IV) compounds and their respective platinum(II) analogues, implicated reduction as a means of activation of the platinum(IV) complexes.
- Full Text:
- Date Issued: 2009
- Authors: Jaganath, Yatish
- Date: 2009
- Subjects: Coordination compounds , Antineoplastic antibiotics , Cancer -- Chemotherapy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10446 , http://hdl.handle.net/10948/d1021222
- Description: The research conducted in this study focussed on advancing the knowledge database of diamineplatinum complexes on two frontiers: 1) the development of novel anticancer complexes, and 2) improvements in their synthetic chemistry. Novel square-planar dichloro and oxalato platinum(II) complexes were synthesized as potential anticancer agents in accordance with a comprehensive set of factors identified as being significant in optimizing such action. The nonleaving ligands consisted of asymmetric chelating chiral diamines of the form 1- (1-R-imidazol-2yl)(R')methanamine (R representing methyl, butyl and R' methyl, phenyl). The complexes were characterized by a host of spectral, thermal and crystallographic techniques. In addition, the stabilities of the complexes were monitored in aqueous and saline solutions. Cytotoxicity screening on three cultured cancer cell lines (MCF-7, HeLa and HT29) indicated the compounds, present as their respective racemates, to have rather modest activities relative to cisplatin; with complexes having the smallest substituents, R,R' = methyl, being most active. In recognition of the limitations of traditional silver-based syntheses of oxalatoplatinum(II) complexes, innovative non-silver methods were developed using the well known cancer drug, oxaliplatin, (trans-R,R-1,2- diaminocyclohexane)oxalatoplatinum(II), as a prototype. These involved direct ligand exchange reactions of the dichloro precursor, (trans-R,R-1,2- diaminocyclohexane)dichloroplatinum(II), with tetrabutylammonium oxalate in essentially non-aqueous solvents. A 90:10 mixture of isoamyl alcohol (3-methyl- 1-butanol):water, proved to be a promising solvent, enabling the recovery of pure oxaliplatin (~98 percent) after 9 hours at 88 °C in yields of up to 86 percent. In light of the perceived unique mode of anticancer action available to mononitroplatinum(IV) complexes (i.e. their STAT3-binding potential), octahedral diamineoxalatoplatinum(IV) complexes containing axially-coordinated nitro and halo co-ligands were synthesized and extensively characterized. Electrochemical studies revealed trends in reduction potential which could be correlated to structural / chemical traits of the coordinated diamine and axial ligands. The similarities of the determined cytotoxicities of the platinum(IV) compounds and their respective platinum(II) analogues, implicated reduction as a means of activation of the platinum(IV) complexes.
- Full Text:
- Date Issued: 2009
An investigation of the in vitro anticancer properties of selected platinum compounds
- Authors: Du Plessis-Stoman, Debbie
- Date: 2006
- Subjects: Antineoplastic agents , Platinum compounds , Cancer -- Immunological aspects , Cancer -- Chemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10334 , http://hdl.handle.net/10948/498 , http://hdl.handle.net/10948/d1012002 , Antineoplastic agents , Platinum compounds , Cancer -- Immunological aspects , Cancer -- Chemotherapy
- Description: This dissertation mainly deals with some biochemical aspects regarding the efficacy of novel platinum anticancer compounds, as part of a broader study in which both chemistry and biochemistry are involved. Various novel diamine and N-S donor chelate compounds of platinum II and IV have been developed in which factors such as stereochemistry, ligand exchange rate and biocompatibility were considered as additional parameters. In the first order testing, each of these compounds was tested with reference to their “killing” potential by comparing their rate of killing, over a period of 48 hours with those of cisplatin and oxaliplatin. Some 80 compounds were tested in this way. Although only a few could be regarded as equal to or even better than cisplatin and oxaliplatin, the testing of these compounds on cancer cells provided useful knowledge for the further development of novel compounds. Four of the better compounds, namely Y9, Y14, Y16 and Lt16.2 were selected for further studies to obtain more detailed knowledge of their anticancer action, including some flow cytometric studies. In addition to the above, cisplatin resistant cells were produced for each of the three different cell lines tested, namely, HeLa, HT29 and MCF7 cancer cell lines, by intermittent and incremental exposure to cisplatin (all the cell lines tested became resistant to cisplatin). Each of the selected compounds were exposed to the cells in the same manner, in order to attempt the induction of resistance against these compounds in the three cell lines tested (i.e. whether these cells will become resistant to the various compounds). Each of these selected platinum containing compounds were subsequently tested against the “cisplatin resistant” cell lines in order to determine their efficacy against such cells. One such compound could be singled out, since cervical cancer cells (HeLa cells) do not become resistant to it. This behaviour is similar to that of oxaliplatin against cervical cancer and colon cancer (HT29) cells (oxaliplatin is the number one treatment for colon cancer at present). This compound also proved to be more active against cisplatin resistant cell lines. It was found that all the compounds induced apoptosis in the cell lines tested as well as inhibit the DNA cycle at one or more phase. Finally, an effort was made to evaluate the different compounds by comparing them with respect to their properties relating to anticancer action.
- Full Text:
- Date Issued: 2006
- Authors: Du Plessis-Stoman, Debbie
- Date: 2006
- Subjects: Antineoplastic agents , Platinum compounds , Cancer -- Immunological aspects , Cancer -- Chemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10334 , http://hdl.handle.net/10948/498 , http://hdl.handle.net/10948/d1012002 , Antineoplastic agents , Platinum compounds , Cancer -- Immunological aspects , Cancer -- Chemotherapy
- Description: This dissertation mainly deals with some biochemical aspects regarding the efficacy of novel platinum anticancer compounds, as part of a broader study in which both chemistry and biochemistry are involved. Various novel diamine and N-S donor chelate compounds of platinum II and IV have been developed in which factors such as stereochemistry, ligand exchange rate and biocompatibility were considered as additional parameters. In the first order testing, each of these compounds was tested with reference to their “killing” potential by comparing their rate of killing, over a period of 48 hours with those of cisplatin and oxaliplatin. Some 80 compounds were tested in this way. Although only a few could be regarded as equal to or even better than cisplatin and oxaliplatin, the testing of these compounds on cancer cells provided useful knowledge for the further development of novel compounds. Four of the better compounds, namely Y9, Y14, Y16 and Lt16.2 were selected for further studies to obtain more detailed knowledge of their anticancer action, including some flow cytometric studies. In addition to the above, cisplatin resistant cells were produced for each of the three different cell lines tested, namely, HeLa, HT29 and MCF7 cancer cell lines, by intermittent and incremental exposure to cisplatin (all the cell lines tested became resistant to cisplatin). Each of the selected compounds were exposed to the cells in the same manner, in order to attempt the induction of resistance against these compounds in the three cell lines tested (i.e. whether these cells will become resistant to the various compounds). Each of these selected platinum containing compounds were subsequently tested against the “cisplatin resistant” cell lines in order to determine their efficacy against such cells. One such compound could be singled out, since cervical cancer cells (HeLa cells) do not become resistant to it. This behaviour is similar to that of oxaliplatin against cervical cancer and colon cancer (HT29) cells (oxaliplatin is the number one treatment for colon cancer at present). This compound also proved to be more active against cisplatin resistant cell lines. It was found that all the compounds induced apoptosis in the cell lines tested as well as inhibit the DNA cycle at one or more phase. Finally, an effort was made to evaluate the different compounds by comparing them with respect to their properties relating to anticancer action.
- Full Text:
- Date Issued: 2006
- «
- ‹
- 1
- ›
- »