Liposomal formulations of metallophthalocyanines-nanoparticle conjugates for hypoxic photodynamic therapy and photoelectrocatalysis
- Authors: Nwahara, Nnamdi Ugochinyere
- Date: 2023-10-13
- Subjects: Liposomes , Photochemotherapy , Phthalocyanines , Photoelectrochemistry , Cancer Treatment
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/432159 , vital:72847 , DOI 10.21504/10962/432159
- Description: This thesis investigates new strategies to enhance the efficacy of photodynamic therapy (PDT) under hypoxic conditions using in-vitro cancer cell models. Phthalocyanines are chosen as viable photosensitizer complexes owing to the favourable absorption properties. To this end, this thesis reports on the synthesis and photophysicochemical properties of various zinc and silicon phthalocyanines (Pcs). To afford better photophysicochemical properties, the reported Pcs were conjugated to different nanoparticles (NPs) through chemisorption as well as amide bond formation to yield Pc-NP conjugates. All the studied Pcs showed relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yields. The various mechanisms for hypoxic response include (i) Type I PDT, (ii) PDT coupled with oxygen-independent therapy and (iii) in-situ oxygen generation using catalase-mimicking nanoparticles which serve to supplement in-vitro oxygen concentrations using MPcs or MPc-NPs conjugates. The mechanisms were assessed using electrochemical, computational techniques and catalase mimicking experiments. The as-synthesised Pcs or Pc-NPs were subjected to liposomal loading before PDT studies which led to enhanced biocompatibility and aqueous dispersity. The in-vitro dark cytotoxicity tests and photodynamic therapy activities of the fabricated Pc-liposomes and Pc-NPs-liposomes on either Henrietta Lacks (HeLa) or Michigan Cancer Foundation-7 (MCF-7) breast cancer cells are presented herein. This work further showed that folic acid (FA) functionalization of liposomes could be exploited for active drug delivery and herein led to an almost 3-fold increase in drug uptake vs non-FA functionalised liposomes in accordance with folate receptor (FR) expression levels between HeLa and MCF-7 cells. The in-vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates were accessed using MCF-7 and HeLa cell lines. The various mechanisms; (i) Type I PDT, (ii) PDT coupled with oxygen -independent therapy and (iii) in-situ oxygen generation using catalase-mimicking nanoparticles were shown to adequately compensate for the otherwise attenuation of PDT activity under hypoxia. , Thesis (PhD) -- Faculty of Science, Chemistry, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Nwahara, Nnamdi Ugochinyere
- Date: 2023-10-13
- Subjects: Liposomes , Photochemotherapy , Phthalocyanines , Photoelectrochemistry , Cancer Treatment
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/432159 , vital:72847 , DOI 10.21504/10962/432159
- Description: This thesis investigates new strategies to enhance the efficacy of photodynamic therapy (PDT) under hypoxic conditions using in-vitro cancer cell models. Phthalocyanines are chosen as viable photosensitizer complexes owing to the favourable absorption properties. To this end, this thesis reports on the synthesis and photophysicochemical properties of various zinc and silicon phthalocyanines (Pcs). To afford better photophysicochemical properties, the reported Pcs were conjugated to different nanoparticles (NPs) through chemisorption as well as amide bond formation to yield Pc-NP conjugates. All the studied Pcs showed relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yields. The various mechanisms for hypoxic response include (i) Type I PDT, (ii) PDT coupled with oxygen-independent therapy and (iii) in-situ oxygen generation using catalase-mimicking nanoparticles which serve to supplement in-vitro oxygen concentrations using MPcs or MPc-NPs conjugates. The mechanisms were assessed using electrochemical, computational techniques and catalase mimicking experiments. The as-synthesised Pcs or Pc-NPs were subjected to liposomal loading before PDT studies which led to enhanced biocompatibility and aqueous dispersity. The in-vitro dark cytotoxicity tests and photodynamic therapy activities of the fabricated Pc-liposomes and Pc-NPs-liposomes on either Henrietta Lacks (HeLa) or Michigan Cancer Foundation-7 (MCF-7) breast cancer cells are presented herein. This work further showed that folic acid (FA) functionalization of liposomes could be exploited for active drug delivery and herein led to an almost 3-fold increase in drug uptake vs non-FA functionalised liposomes in accordance with folate receptor (FR) expression levels between HeLa and MCF-7 cells. The in-vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates were accessed using MCF-7 and HeLa cell lines. The various mechanisms; (i) Type I PDT, (ii) PDT coupled with oxygen -independent therapy and (iii) in-situ oxygen generation using catalase-mimicking nanoparticles were shown to adequately compensate for the otherwise attenuation of PDT activity under hypoxia. , Thesis (PhD) -- Faculty of Science, Chemistry, 2023
- Full Text:
- Date Issued: 2023-10-13
The development of ionic zinc(II) phthalocyanines for sono-photodynamic combination therapy of cervical and breast cancer
- Authors: Nene, Lindokuhle Cindy
- Date: 2023-03-31
- Subjects: Phthalocyanines , Sonochemistry , Photochemotherapy , Cancer Treatment
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/422565 , vital:71958 , DOI 10.21504/10962/422565
- Description: This study focuses on the development of the sono-photodynamic combination therapy (SPDT) activity of phthalocyanines (Pcs) on the cervical and breast cancer cell lines in vitro. The SPDT technique utilizes ultrasound in combination with light to elicit cytotoxic effects for cancer eradication. In this work, a selection of tetra-peripherally substituted Zn(II) cationic and zwitterionic Pcs were prepared. The photophysical parameters of the Pcs were determined including their fluorescence behaviours and efficiency of the triplet excited state population. The effects of the ultrasonic parameters (frequencies (MHz) and power (W.cm-2)) on the stability of the Pcs were evaluated. Four parameters were evaluated: Par I (1 MHz: 1 W.cm-2), Par II (1 MHz: 2 W.cm-2), Par III (3 MHz: 1 W.cm-2) and Par IV (3 MHz: 2 W.cm-2). The stability of the Pcs reduced with the increase in the ultrasonic power (for Par II and Par IV). The Par I showed the least degradation compared to the other parameters and was therefore used for the SPDT treatments. The sonodynamic (SDT), photodynamic (PDT) therapy activities of the Pcs were studied and compared to their SPDT efficacies. The Pcs showed reactive oxygen species generation during the SDT, PDT and SPDT treatments. For the SDT and SPDT, singlet oxygen (1O2) and hydroxyl radicals (•OH) were detected. For PDT, only the 1O2 were detected. The cell cytotoxicity studies for the Pcs showed relatively higher therapeutic efficacies for the SDT treatments compared to the PDT treatments, where the SPDT showed higher therapeutic efficacies compared to both the SDT and PDT monotreatments on both the cell lines in vitro. Overall, the combination treatments were better compared to the monotreatments. The activities of the Pcs were compared by their differences in structures, including the type of R-group, type of quaternizing agent and type of nanoparticle conjugates. , Thesis (PhD) -- Faculty of Science, Chemistry, 2023
- Full Text:
- Date Issued: 2023-03-31
- Authors: Nene, Lindokuhle Cindy
- Date: 2023-03-31
- Subjects: Phthalocyanines , Sonochemistry , Photochemotherapy , Cancer Treatment
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/422565 , vital:71958 , DOI 10.21504/10962/422565
- Description: This study focuses on the development of the sono-photodynamic combination therapy (SPDT) activity of phthalocyanines (Pcs) on the cervical and breast cancer cell lines in vitro. The SPDT technique utilizes ultrasound in combination with light to elicit cytotoxic effects for cancer eradication. In this work, a selection of tetra-peripherally substituted Zn(II) cationic and zwitterionic Pcs were prepared. The photophysical parameters of the Pcs were determined including their fluorescence behaviours and efficiency of the triplet excited state population. The effects of the ultrasonic parameters (frequencies (MHz) and power (W.cm-2)) on the stability of the Pcs were evaluated. Four parameters were evaluated: Par I (1 MHz: 1 W.cm-2), Par II (1 MHz: 2 W.cm-2), Par III (3 MHz: 1 W.cm-2) and Par IV (3 MHz: 2 W.cm-2). The stability of the Pcs reduced with the increase in the ultrasonic power (for Par II and Par IV). The Par I showed the least degradation compared to the other parameters and was therefore used for the SPDT treatments. The sonodynamic (SDT), photodynamic (PDT) therapy activities of the Pcs were studied and compared to their SPDT efficacies. The Pcs showed reactive oxygen species generation during the SDT, PDT and SPDT treatments. For the SDT and SPDT, singlet oxygen (1O2) and hydroxyl radicals (•OH) were detected. For PDT, only the 1O2 were detected. The cell cytotoxicity studies for the Pcs showed relatively higher therapeutic efficacies for the SDT treatments compared to the PDT treatments, where the SPDT showed higher therapeutic efficacies compared to both the SDT and PDT monotreatments on both the cell lines in vitro. Overall, the combination treatments were better compared to the monotreatments. The activities of the Pcs were compared by their differences in structures, including the type of R-group, type of quaternizing agent and type of nanoparticle conjugates. , Thesis (PhD) -- Faculty of Science, Chemistry, 2023
- Full Text:
- Date Issued: 2023-03-31
- «
- ‹
- 1
- ›
- »