Design of pH Sensitive Electrochemical Sensor for Catecholamine Neurotransmitters Detection and the Screening Off of Ascorbic Acid
- Tshenkeng, Keamogetse Tebogo Charlotte
- Authors: Tshenkeng, Keamogetse Tebogo Charlotte
- Date: 2021-10-29
- Subjects: Catecholamines , Electrochemical sensors , Neurotransmitters , Vitamin C , Cobalt , Phthalocyanines , Cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc)
- Language: English
- Type: thesis , text
- Identifier: http://hdl.handle.net/10962/176921 , vital:42772
- Description: This study presents the synthesis of cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc) through the cyclotetramerization of 4-(3-carboxyphe-noxy)phthalonitrile and its full characterization using Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, magnetic circular dichroism (MCD) spectroscopy, elemental analysis and mass spectrometry. The CoTCPhOPc was then immobilized onto phenylethylamino (PEA) pre-grafted gold electrode surface, Au-PEA using amide coupling reaction through a reaction with NHS and DCC to obtain Au-PEA-CoTCPhOPc. This yielded pH sensitive thin films due to the terminal carboxylic acid (–COOH) functional groups. Electrochemical and surface characterization was conducted to confirm the modification of the bare Au with PEA thin film (Au-PEA) and amide coupling of CoTCPhOPc (Au-PEA-CoTCPhOPc). The Au-PEA-CoTCPhOPc electrode was shown to possess pH selective properties towards negatively charged [Fe(CN)6]3-/4- and positively charged [Ru(NH3)6]2+/3+ redox probes. Au-PEA-CoTCPhOPc electrode surface enabled the detection of catecholamine neurotransmitters (dopamine, norepinephrine and epinephrine) and the screening off of ascorbic acid by means of pH sensitive functional groups. Bare Au and Au-PEA electrodes exhibited electro-oxidation and electroreduction of catecholamine neuro-transmitters and ascorbic acid at higher potentials compared to Au-PEA-CoTCPhOPc. There was no electro-oxidation or electroreduction of ascorbic acid at Au-PEA-CoTCPhOPc. For Au-PEA-CoTCPhOPc, excellent electrocatalytic oxidation with the limit of detection (LoD) determined using 3σ was found to be 1.32 (0.95), 2.11 (1.78) and 3.08 μM for electro-oxidation and electroreduction (in brackets) of dopamine, norepinephrine and epinephrine respectively. The limit of quantification (LoQ) was determined using 10σ and found to be 4.41 (3.17), 7.02 (5.93) and 10.3 μM electro-oxidation and electroreduction (in brackets) for dopamine, norepinephrine and epinephrine respectively. The Au-PEA-CoTCPhOPc thin film was shown to screen off ascorbic acid as no electrocatalytic oxidation was observed for up to 100.0 μM concentration. , Thesis (MSc) -- Faculty of Science, Department of Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Tshenkeng, Keamogetse Tebogo Charlotte
- Date: 2021-10-29
- Subjects: Catecholamines , Electrochemical sensors , Neurotransmitters , Vitamin C , Cobalt , Phthalocyanines , Cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc)
- Language: English
- Type: thesis , text
- Identifier: http://hdl.handle.net/10962/176921 , vital:42772
- Description: This study presents the synthesis of cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc) through the cyclotetramerization of 4-(3-carboxyphe-noxy)phthalonitrile and its full characterization using Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, magnetic circular dichroism (MCD) spectroscopy, elemental analysis and mass spectrometry. The CoTCPhOPc was then immobilized onto phenylethylamino (PEA) pre-grafted gold electrode surface, Au-PEA using amide coupling reaction through a reaction with NHS and DCC to obtain Au-PEA-CoTCPhOPc. This yielded pH sensitive thin films due to the terminal carboxylic acid (–COOH) functional groups. Electrochemical and surface characterization was conducted to confirm the modification of the bare Au with PEA thin film (Au-PEA) and amide coupling of CoTCPhOPc (Au-PEA-CoTCPhOPc). The Au-PEA-CoTCPhOPc electrode was shown to possess pH selective properties towards negatively charged [Fe(CN)6]3-/4- and positively charged [Ru(NH3)6]2+/3+ redox probes. Au-PEA-CoTCPhOPc electrode surface enabled the detection of catecholamine neurotransmitters (dopamine, norepinephrine and epinephrine) and the screening off of ascorbic acid by means of pH sensitive functional groups. Bare Au and Au-PEA electrodes exhibited electro-oxidation and electroreduction of catecholamine neuro-transmitters and ascorbic acid at higher potentials compared to Au-PEA-CoTCPhOPc. There was no electro-oxidation or electroreduction of ascorbic acid at Au-PEA-CoTCPhOPc. For Au-PEA-CoTCPhOPc, excellent electrocatalytic oxidation with the limit of detection (LoD) determined using 3σ was found to be 1.32 (0.95), 2.11 (1.78) and 3.08 μM for electro-oxidation and electroreduction (in brackets) of dopamine, norepinephrine and epinephrine respectively. The limit of quantification (LoQ) was determined using 10σ and found to be 4.41 (3.17), 7.02 (5.93) and 10.3 μM electro-oxidation and electroreduction (in brackets) for dopamine, norepinephrine and epinephrine respectively. The Au-PEA-CoTCPhOPc thin film was shown to screen off ascorbic acid as no electrocatalytic oxidation was observed for up to 100.0 μM concentration. , Thesis (MSc) -- Faculty of Science, Department of Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
Electrochemical studies of titanium, manganese and cobalt phthalocyanines
- Authors: Nombona, Nolwazi
- Date: 2009
- Subjects: Titanium , Manganese , Cobalt , Phthalocyanines , Electrochemistry , Electrodes , Self-assembly (Chemistry)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4312 , http://hdl.handle.net/10962/d1004970 , Titanium , Manganese , Cobalt , Phthalocyanines , Electrochemistry , Electrodes , Self-assembly (Chemistry)
- Description: Syntheses, spectral, electrochemical and spectroelectrochemical studies of phenylthio and amino derivatised metallophthalocyanines complexes are reported. The complexes are immobilized onto a gold macro disk, gold ultramicroelectrode and gold coated fiber electrodes via self assembly with phenylthio MPc derivatives or onto a glassy carbon electrode via electropolymerisation with amino MPc derivatives. For the first time MPc SAMs were formed on gold coated fiber. The electrocatalytic behavior of the modified electrodes was studied for the detection of nitrite and L-cysteine, all modified electrodes showed improved electrocatalytic oxidation compared to the unmodified electrode. The MPc complexes catalyzed nitrite oxidation via a two-electron mechanism producing nitrate. Cobalt tetraaminophthalocyanine showed the best catalytic activity for nitrite oxidation in terms of overpotential lowering compared to other complexes and thus was used for nitrite detection in a food sample, the nitrite concentration was determined to be 59.13 ppm, well within the limit for cured meat products. Electrocatalytic oxidation of L-cysteine on SAM modified gold coated fiber was reported for the first time. The gold coated fiber and ultamicro cylinder electrode were less stable towards the electro-oxidation of cysteine compared to its oxidation on the gold disk. The gold disk electrode gave better catalytic performance in terms of stability and reduction of overpotential. The phenylthio cobalt phthalocyanine derivative gave the best catalytic activity for L-cysteine oxidation in terms of overpotential lowering compared to other phenylthio derivatized MPc complexes. The amount of L-cysteine in human urine was 2.4 mM, well within the urinary L-cysteine excretion range for a healthy human being.
- Full Text:
- Date Issued: 2009
- Authors: Nombona, Nolwazi
- Date: 2009
- Subjects: Titanium , Manganese , Cobalt , Phthalocyanines , Electrochemistry , Electrodes , Self-assembly (Chemistry)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4312 , http://hdl.handle.net/10962/d1004970 , Titanium , Manganese , Cobalt , Phthalocyanines , Electrochemistry , Electrodes , Self-assembly (Chemistry)
- Description: Syntheses, spectral, electrochemical and spectroelectrochemical studies of phenylthio and amino derivatised metallophthalocyanines complexes are reported. The complexes are immobilized onto a gold macro disk, gold ultramicroelectrode and gold coated fiber electrodes via self assembly with phenylthio MPc derivatives or onto a glassy carbon electrode via electropolymerisation with amino MPc derivatives. For the first time MPc SAMs were formed on gold coated fiber. The electrocatalytic behavior of the modified electrodes was studied for the detection of nitrite and L-cysteine, all modified electrodes showed improved electrocatalytic oxidation compared to the unmodified electrode. The MPc complexes catalyzed nitrite oxidation via a two-electron mechanism producing nitrate. Cobalt tetraaminophthalocyanine showed the best catalytic activity for nitrite oxidation in terms of overpotential lowering compared to other complexes and thus was used for nitrite detection in a food sample, the nitrite concentration was determined to be 59.13 ppm, well within the limit for cured meat products. Electrocatalytic oxidation of L-cysteine on SAM modified gold coated fiber was reported for the first time. The gold coated fiber and ultamicro cylinder electrode were less stable towards the electro-oxidation of cysteine compared to its oxidation on the gold disk. The gold disk electrode gave better catalytic performance in terms of stability and reduction of overpotential. The phenylthio cobalt phthalocyanine derivative gave the best catalytic activity for L-cysteine oxidation in terms of overpotential lowering compared to other phenylthio derivatized MPc complexes. The amount of L-cysteine in human urine was 2.4 mM, well within the urinary L-cysteine excretion range for a healthy human being.
- Full Text:
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »