A comparative study of CERBER, MAKTUB and LOCKY Ransomware using a Hybridised-Malware analysis
- Authors: Schmitt, Veronica
- Date: 2019
- Subjects: Microsoft Windows (Computer file) , Data protection , Computer crimes -- Prevention , Computer security , Computer networks -- Security measures , Computers -- Access control , Malware (Computer software)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92313 , vital:30702
- Description: There has been a significant increase in the prevalence of Ransomware attacks in the preceding four years to date. This indicates that the battle has not yet been won defending against this class of malware. This research proposes that by identifying the similarities within the operational framework of Ransomware strains, a better overall understanding of their operation and function can be achieved. This, in turn, will aid in a quicker response to future attacks. With the average Ransomware attack taking two hours to be identified, it shows that there is not yet a clear understanding as to why these attacks are so successful. Research into Ransomware is limited by what is currently known on the topic. Due to the limitations of the research the decision was taken to only examined three samples of Ransomware from different families. This was decided due to the complexities and comprehensive nature of the research. The in depth nature of the research and the time constraints associated with it did not allow for proof of concept of this framework to be tested on more than three families, but the exploratory work was promising and should be further explored in future research. The aim of the research is to follow the Hybrid-Malware analysis framework which consists of both static and the dynamic analysis phases, in addition to the digital forensic examination of the infected system. This allows for signature-based findings, along with behavioural and forensic findings all in one. This information allows for a better understanding of how this malware is designed and how it infects and remains persistent on a system. The operating system which has been chosen is the Microsoft Window 7 operating system which is still utilised by a significant proportion of Windows users especially in the corporate environment. The experiment process was designed to enable the researcher the ability to collect information regarding the Ransomware and every aspect of its behaviour and communication on a target system. The results can be compared across the three strains to identify the commonalities. The initial hypothesis was that Ransomware variants are all much like an instant cake box consists of specific building blocks which remain the same with the flavouring of the cake mix being the unique feature.
- Full Text:
- Date Issued: 2019
- Authors: Schmitt, Veronica
- Date: 2019
- Subjects: Microsoft Windows (Computer file) , Data protection , Computer crimes -- Prevention , Computer security , Computer networks -- Security measures , Computers -- Access control , Malware (Computer software)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92313 , vital:30702
- Description: There has been a significant increase in the prevalence of Ransomware attacks in the preceding four years to date. This indicates that the battle has not yet been won defending against this class of malware. This research proposes that by identifying the similarities within the operational framework of Ransomware strains, a better overall understanding of their operation and function can be achieved. This, in turn, will aid in a quicker response to future attacks. With the average Ransomware attack taking two hours to be identified, it shows that there is not yet a clear understanding as to why these attacks are so successful. Research into Ransomware is limited by what is currently known on the topic. Due to the limitations of the research the decision was taken to only examined three samples of Ransomware from different families. This was decided due to the complexities and comprehensive nature of the research. The in depth nature of the research and the time constraints associated with it did not allow for proof of concept of this framework to be tested on more than three families, but the exploratory work was promising and should be further explored in future research. The aim of the research is to follow the Hybrid-Malware analysis framework which consists of both static and the dynamic analysis phases, in addition to the digital forensic examination of the infected system. This allows for signature-based findings, along with behavioural and forensic findings all in one. This information allows for a better understanding of how this malware is designed and how it infects and remains persistent on a system. The operating system which has been chosen is the Microsoft Window 7 operating system which is still utilised by a significant proportion of Windows users especially in the corporate environment. The experiment process was designed to enable the researcher the ability to collect information regarding the Ransomware and every aspect of its behaviour and communication on a target system. The results can be compared across the three strains to identify the commonalities. The initial hypothesis was that Ransomware variants are all much like an instant cake box consists of specific building blocks which remain the same with the flavouring of the cake mix being the unique feature.
- Full Text:
- Date Issued: 2019
Towards understanding and mitigating attacks leveraging zero-day exploits
- Authors: Smit, Liam
- Date: 2019
- Subjects: Computer crimes -- Prevention , Data protection , Hacking , Computer security , Computer networks -- Security measures , Computers -- Access control , Malware (Computer software)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/115718 , vital:34218
- Description: Zero-day vulnerabilities are unknown and therefore not addressed with the result that they can be exploited by attackers to gain unauthorised system access. In order to understand and mitigate against attacks leveraging zero-days or unknown techniques, it is necessary to study the vulnerabilities, exploits and attacks that make use of them. In recent years there have been a number of leaks publishing such attacks using various methods to exploit vulnerabilities. This research seeks to understand what types of vulnerabilities exist, why and how these are exploited, and how to defend against such attacks by either mitigating the vulnerabilities or the method / process of exploiting them. By moving beyond merely remedying the vulnerabilities to defences that are able to prevent or detect the actions taken by attackers, the security of the information system will be better positioned to deal with future unknown threats. An interesting finding is how attackers exploit moving beyond the observable bounds to circumvent security defences, for example, compromising syslog servers, or going down to lower system rings to gain access. However, defenders can counter this by employing defences that are external to the system preventing attackers from disabling them or removing collected evidence after gaining system access. Attackers are able to defeat air-gaps via the leakage of electromagnetic radiation as well as misdirect attribution by planting false artefacts for forensic analysis and attacking from third party information systems. They analyse the methods of other attackers to learn new techniques. An example of this is the Umbrage project whereby malware is analysed to decide whether it should be implemented as a proof of concept. Another important finding is that attackers respect defence mechanisms such as: remote syslog (e.g. firewall), core dump files, database auditing, and Tripwire (e.g. SlyHeretic). These defences all have the potential to result in the attacker being discovered. Attackers must either negate the defence mechanism or find unprotected targets. Defenders can use technologies such as encryption to defend against interception and man-in-the-middle attacks. They can also employ honeytokens and honeypots to alarm misdirect, slow down and learn from attackers. By employing various tactics defenders are able to increase their chance of detecting and time to react to attacks, even those exploiting hitherto unknown vulnerabilities. To summarize the information presented in this thesis and to show the practical importance thereof, an examination is presented of the NSA's network intrusion of the SWIFT organisation. It shows that the firewalls were exploited with remote code execution zerodays. This attack has a striking parallel in the approach used in the recent VPNFilter malware. If nothing else, the leaks provide information to other actors on how to attack and what to avoid. However, by studying state actors, we can gain insight into what other actors with fewer resources can do in the future.
- Full Text:
- Date Issued: 2019
- Authors: Smit, Liam
- Date: 2019
- Subjects: Computer crimes -- Prevention , Data protection , Hacking , Computer security , Computer networks -- Security measures , Computers -- Access control , Malware (Computer software)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/115718 , vital:34218
- Description: Zero-day vulnerabilities are unknown and therefore not addressed with the result that they can be exploited by attackers to gain unauthorised system access. In order to understand and mitigate against attacks leveraging zero-days or unknown techniques, it is necessary to study the vulnerabilities, exploits and attacks that make use of them. In recent years there have been a number of leaks publishing such attacks using various methods to exploit vulnerabilities. This research seeks to understand what types of vulnerabilities exist, why and how these are exploited, and how to defend against such attacks by either mitigating the vulnerabilities or the method / process of exploiting them. By moving beyond merely remedying the vulnerabilities to defences that are able to prevent or detect the actions taken by attackers, the security of the information system will be better positioned to deal with future unknown threats. An interesting finding is how attackers exploit moving beyond the observable bounds to circumvent security defences, for example, compromising syslog servers, or going down to lower system rings to gain access. However, defenders can counter this by employing defences that are external to the system preventing attackers from disabling them or removing collected evidence after gaining system access. Attackers are able to defeat air-gaps via the leakage of electromagnetic radiation as well as misdirect attribution by planting false artefacts for forensic analysis and attacking from third party information systems. They analyse the methods of other attackers to learn new techniques. An example of this is the Umbrage project whereby malware is analysed to decide whether it should be implemented as a proof of concept. Another important finding is that attackers respect defence mechanisms such as: remote syslog (e.g. firewall), core dump files, database auditing, and Tripwire (e.g. SlyHeretic). These defences all have the potential to result in the attacker being discovered. Attackers must either negate the defence mechanism or find unprotected targets. Defenders can use technologies such as encryption to defend against interception and man-in-the-middle attacks. They can also employ honeytokens and honeypots to alarm misdirect, slow down and learn from attackers. By employing various tactics defenders are able to increase their chance of detecting and time to react to attacks, even those exploiting hitherto unknown vulnerabilities. To summarize the information presented in this thesis and to show the practical importance thereof, an examination is presented of the NSA's network intrusion of the SWIFT organisation. It shows that the firewalls were exploited with remote code execution zerodays. This attack has a striking parallel in the approach used in the recent VPNFilter malware. If nothing else, the leaks provide information to other actors on how to attack and what to avoid. However, by studying state actors, we can gain insight into what other actors with fewer resources can do in the future.
- Full Text:
- Date Issued: 2019
Towards an evaluation and protection strategy for critical infrastructure
- Authors: Gottschalk, Jason Howard
- Date: 2015
- Subjects: Computer crimes -- Prevention , Computer networks -- Security measures , Computer crimes -- Law and legislation -- South Africa , Public works -- Security measures
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4721 , http://hdl.handle.net/10962/d1018793
- Description: Critical Infrastructure is often overlooked from an Information Security perspective as being of high importance to protect which may result in Critical Infrastructure being at risk to Cyber related attacks with potential dire consequences. Furthermore, what is considered Critical Infrastructure is often a complex discussion, with varying opinions across audiences. Traditional Critical Infrastructure included power stations, water, sewage pump stations, gas pipe lines, power grids and a new entrant, the “internet of things”. This list is not complete and a constant challenge exists in identifying Critical Infrastructure and its interdependencies. The purpose of this research is to highlight the importance of protecting Critical Infrastructure as well as proposing a high level framework aiding in the identification and securing of Critical Infrastructure. To achieve this, key case studies involving Cyber crime and Cyber warfare, as well as the identification of attack vectors and impact on against Critical Infrastructure (as applicable to Critical Infrastructure where possible), were identified and discussed. Furthermore industry related material was researched as to identify key controls that would aid in protecting Critical Infrastructure. The identification of initiatives that countries were pursuing, that would aid in the protection of Critical Infrastructure, were identified and discussed. Research was conducted into the various standards, frameworks and methodologies available to aid in the identification, remediation and ultimately the protection of Critical Infrastructure. A key output of the research was the development of a hybrid approach to identifying Critical Infrastructure, associated vulnerabilities and an approach for remediation with specific metrics (based on the research performed). The conclusion based on the research is that there is often a need and a requirement to identify and protect Critical Infrastructure however this is usually initiated or driven by non-owners of Critical Infrastructure (Governments, governing bodies, standards bodies and security consultants). Furthermore where there are active initiative by owners very often the suggested approaches are very high level in nature with little direct guidance available for very immature environments.
- Full Text:
- Date Issued: 2015
- Authors: Gottschalk, Jason Howard
- Date: 2015
- Subjects: Computer crimes -- Prevention , Computer networks -- Security measures , Computer crimes -- Law and legislation -- South Africa , Public works -- Security measures
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4721 , http://hdl.handle.net/10962/d1018793
- Description: Critical Infrastructure is often overlooked from an Information Security perspective as being of high importance to protect which may result in Critical Infrastructure being at risk to Cyber related attacks with potential dire consequences. Furthermore, what is considered Critical Infrastructure is often a complex discussion, with varying opinions across audiences. Traditional Critical Infrastructure included power stations, water, sewage pump stations, gas pipe lines, power grids and a new entrant, the “internet of things”. This list is not complete and a constant challenge exists in identifying Critical Infrastructure and its interdependencies. The purpose of this research is to highlight the importance of protecting Critical Infrastructure as well as proposing a high level framework aiding in the identification and securing of Critical Infrastructure. To achieve this, key case studies involving Cyber crime and Cyber warfare, as well as the identification of attack vectors and impact on against Critical Infrastructure (as applicable to Critical Infrastructure where possible), were identified and discussed. Furthermore industry related material was researched as to identify key controls that would aid in protecting Critical Infrastructure. The identification of initiatives that countries were pursuing, that would aid in the protection of Critical Infrastructure, were identified and discussed. Research was conducted into the various standards, frameworks and methodologies available to aid in the identification, remediation and ultimately the protection of Critical Infrastructure. A key output of the research was the development of a hybrid approach to identifying Critical Infrastructure, associated vulnerabilities and an approach for remediation with specific metrics (based on the research performed). The conclusion based on the research is that there is often a need and a requirement to identify and protect Critical Infrastructure however this is usually initiated or driven by non-owners of Critical Infrastructure (Governments, governing bodies, standards bodies and security consultants). Furthermore where there are active initiative by owners very often the suggested approaches are very high level in nature with little direct guidance available for very immature environments.
- Full Text:
- Date Issued: 2015
A framework for high speed lexical classification of malicious URLs
- Authors: Egan, Shaun Peter
- Date: 2014
- Subjects: Internet -- Security measures -- Research , Uniform Resource Identifiers -- Security measures -- Research , Neural networks (Computer science) -- Research , Computer security -- Research , Computer crimes -- Prevention , Phishing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4696 , http://hdl.handle.net/10962/d1011933 , Internet -- Security measures -- Research , Uniform Resource Identifiers -- Security measures -- Research , Neural networks (Computer science) -- Research , Computer security -- Research , Computer crimes -- Prevention , Phishing
- Description: Phishing attacks employ social engineering to target end-users, with the goal of stealing identifying or sensitive information. This information is used in activities such as identity theft or financial fraud. During a phishing campaign, attackers distribute URLs which; along with false information, point to fraudulent resources in an attempt to deceive users into requesting the resource. These URLs are made obscure through the use of several techniques which make automated detection difficult. Current methods used to detect malicious URLs face multiple problems which attackers use to their advantage. These problems include: the time required to react to new attacks; shifts in trends in URL obfuscation and usability problems caused by the latency incurred by the lookups required by these approaches. A new method of identifying malicious URLs using Artificial Neural Networks (ANNs) has been shown to be effective by several authors. The simple method of classification performed by ANNs result in very high classification speeds with little impact on usability. Samples used for the training, validation and testing of these ANNs are gathered from Phishtank and Open Directory. Words selected from the different sections of the samples are used to create a `Bag-of-Words (BOW)' which is used as a binary input vector indicating the presence of a word for a given sample. Twenty additional features which measure lexical attributes of the sample are used to increase classification accuracy. A framework that is capable of generating these classifiers in an automated fashion is implemented. These classifiers are automatically stored on a remote update distribution service which has been built to supply updates to classifier implementations. An example browser plugin is created and uses ANNs provided by this service. It is both capable of classifying URLs requested by a user in real time and is able to block these requests. The framework is tested in terms of training time and classification accuracy. Classification speed and the effectiveness of compression algorithms on the data required to distribute updates is tested. It is concluded that it is possible to generate these ANNs in a frequent fashion, and in a method that is small enough to distribute easily. It is also shown that classifications are made at high-speed with high-accuracy, resulting in little impact on usability.
- Full Text:
- Date Issued: 2014
- Authors: Egan, Shaun Peter
- Date: 2014
- Subjects: Internet -- Security measures -- Research , Uniform Resource Identifiers -- Security measures -- Research , Neural networks (Computer science) -- Research , Computer security -- Research , Computer crimes -- Prevention , Phishing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4696 , http://hdl.handle.net/10962/d1011933 , Internet -- Security measures -- Research , Uniform Resource Identifiers -- Security measures -- Research , Neural networks (Computer science) -- Research , Computer security -- Research , Computer crimes -- Prevention , Phishing
- Description: Phishing attacks employ social engineering to target end-users, with the goal of stealing identifying or sensitive information. This information is used in activities such as identity theft or financial fraud. During a phishing campaign, attackers distribute URLs which; along with false information, point to fraudulent resources in an attempt to deceive users into requesting the resource. These URLs are made obscure through the use of several techniques which make automated detection difficult. Current methods used to detect malicious URLs face multiple problems which attackers use to their advantage. These problems include: the time required to react to new attacks; shifts in trends in URL obfuscation and usability problems caused by the latency incurred by the lookups required by these approaches. A new method of identifying malicious URLs using Artificial Neural Networks (ANNs) has been shown to be effective by several authors. The simple method of classification performed by ANNs result in very high classification speeds with little impact on usability. Samples used for the training, validation and testing of these ANNs are gathered from Phishtank and Open Directory. Words selected from the different sections of the samples are used to create a `Bag-of-Words (BOW)' which is used as a binary input vector indicating the presence of a word for a given sample. Twenty additional features which measure lexical attributes of the sample are used to increase classification accuracy. A framework that is capable of generating these classifiers in an automated fashion is implemented. These classifiers are automatically stored on a remote update distribution service which has been built to supply updates to classifier implementations. An example browser plugin is created and uses ANNs provided by this service. It is both capable of classifying URLs requested by a user in real time and is able to block these requests. The framework is tested in terms of training time and classification accuracy. Classification speed and the effectiveness of compression algorithms on the data required to distribute updates is tested. It is concluded that it is possible to generate these ANNs in a frequent fashion, and in a method that is small enough to distribute easily. It is also shown that classifications are made at high-speed with high-accuracy, resulting in little impact on usability.
- Full Text:
- Date Issued: 2014
A cyber security awareness and education framework for South Africa
- Authors: Kortjan, Noloxolo
- Date: 2013
- Subjects: Computer networks -- Security measures , Computer crimes -- Prevention , Computer security
- Language: English
- Type: Thesis , Masters , MTech
- Identifier: vital:9811 , http://hdl.handle.net/10948/d1014829
- Description: The Internet is becoming increasingly interwoven in the daily life of many individuals, organisations and nations. It has, to a large extent, had a positive effect on the way people communicate. It has also introduced new avenues for business and has offered nations an opportunity to govern online. Nevertheless, although cyberspace offers an endless list of services and opportunities, it is also accompanied by many risks. One of these risks is cybercrime. The Internet has given criminals a platform on which to grow and proliferate. As a result of the abstract nature of the Internet, it is easy for these criminals to go unpunished. Moreover, many who use the Internet are not aware of such threats; therefore they may themselves be at risk, together with businesses and governmental assets and infrastructure. In view of this, there is a need for cyber security awareness and education initiatives that will promote users who are well versed in the risks associated with the Internet. In this context, it is the role of the government to empower all levels of society by providing the necessary knowledge and expertise to act securely online. However, there is currently a definite lack in South Africa (SA) in this regard, as there are currently no government-led cyber security awareness and education initiatives. The primary research objective of this study, therefore, is to propose a cyber security awareness and education framework for SA that will assist in creating a cyber secure culture in SA among all of its users of the Internet.
- Full Text:
- Date Issued: 2013
- Authors: Kortjan, Noloxolo
- Date: 2013
- Subjects: Computer networks -- Security measures , Computer crimes -- Prevention , Computer security
- Language: English
- Type: Thesis , Masters , MTech
- Identifier: vital:9811 , http://hdl.handle.net/10948/d1014829
- Description: The Internet is becoming increasingly interwoven in the daily life of many individuals, organisations and nations. It has, to a large extent, had a positive effect on the way people communicate. It has also introduced new avenues for business and has offered nations an opportunity to govern online. Nevertheless, although cyberspace offers an endless list of services and opportunities, it is also accompanied by many risks. One of these risks is cybercrime. The Internet has given criminals a platform on which to grow and proliferate. As a result of the abstract nature of the Internet, it is easy for these criminals to go unpunished. Moreover, many who use the Internet are not aware of such threats; therefore they may themselves be at risk, together with businesses and governmental assets and infrastructure. In view of this, there is a need for cyber security awareness and education initiatives that will promote users who are well versed in the risks associated with the Internet. In this context, it is the role of the government to empower all levels of society by providing the necessary knowledge and expertise to act securely online. However, there is currently a definite lack in South Africa (SA) in this regard, as there are currently no government-led cyber security awareness and education initiatives. The primary research objective of this study, therefore, is to propose a cyber security awareness and education framework for SA that will assist in creating a cyber secure culture in SA among all of its users of the Internet.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »