The characterization of GTP Cyclohydrolase I and 6-Pyruvoyl Tetrahydropterin Synthase enzymes as potential anti-malarial drug targets
- Khairallah, Afrah Yousif Huseein
- Authors: Khairallah, Afrah Yousif Huseein
- Date: 2022-04-08
- Subjects: Antimalarials , Plasmodium falciparum , Malaria Chemotherapy , Malaria Africa , Drug resistance , Drug development , Molecular dynamics
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/233784 , vital:50127 , DOI 10.21504/10962/233784
- Description: Malaria remains a public health problem and a high burden of disease, especially in developing countries. The unicellular protozoan malaria parasite of the genus Plasmodium infects about a quarter of a billion people annually, with an estimated 409 000 death cases. The majority of malaria cases occurred in Africa; hence, the region is regarded as endemic for malaria. Global efforts to eradicate the disease led to a decrease in morbidity and mortality rates. However, an enormous burden of malaria infection remains, and it cannot go unnoticed. Countries with limited resources are more affected by the disease, mainly on its public health and socio-economic development, due to many factors besides malaria itself, such as lack of access to adequate, affordable treatments and preventative regimes. Furthermore, the current antimalarial drugs are losing their efficacy because of parasite drug resistance. The emerged drug resistance has reduced the drug efficacy in clearing the parasite from the host system, causing prolonged illness and a higher risk of death. Therefore, the emerged antimalarial drug resistance has hindered the global efforts for malaria control and elimination and established an urgent need for new treatment strategies. When the resistance against classical antimalarial drugs emerged, the class of antifolate antimalarial medicines became the most common alternative. The antifolate antimalarial drugs target the malaria parasite de novo folate biosynthesis pathway by limiting folate derivates, which are essential for the parasite cell growth and survival. Yet again, the malaria parasite developed resistance against the available antifolate drugs, rendering the drugs ineffective in many cases. Given the previous success in targeting the malaria parasite de novo folate biosynthesis pathway, alternative enzymes within this pathway stand as good targets and can be explored to develop new antifolate drugs with novel mechanisms of action. The primary focus of this thesis is to contribute to the existing and growing knowledge of antimalarial drug discovery. The study aims to characterise the malaria parasite de novo folate synthesis pathway enzymes guanosine-5'-triphosphate (GTP) cyclohydrolase I (GCH1) and 6-pyruvoyl tetrahydropterin synthase (PTPS) as alternative drug targets for malaria treatment by using computational approaches. Further, discover new allosteric drug targeting sites within the two enzymes' 3D structures for future drug design and discovery. Sequence and structural analysis were carried out to characterise and pinpoint the two enzymes' unique sequence and structure-based features. From the analyses, key sequence and structure differences were identified between the malaria parasite enzymes relative to their human homolog; the identified sites can aid significantly in designing and developing new antimalarial antifolate drugs with good selectivity toward the parasites’ enzymes. GCH1 and PTPS contain a catalytically essential metal ion in their active site; therefore, force field parameters were needed to study their active sites accurately during all-atom molecular dynamic simulations (MD). The force field parameters were derived through quantum mechanics potential energy surface scans of the metals bonded terms and evaluated via all-atom MD simulations. Proteins structural dynamics is imperative for many biological processes; thus, it is essential to consider the structural dynamics of proteins whilst understanding their function. In this regard, the normal mode analysis (NMA) approach based on the elastic network model (ENM) was employed to study the intrinsic dynamics and conformations changes of GCH1 and PTPS enzymes. The NMA disclosed essential structural information about the protein’s intrinsic dynamics and mechanism of allosteric modulation of their binding properties, further highlighting regions that govern their conformational changes. The analysis also disclosed hotspot residues that are crucial for the proteins' fold stability and function. The NMA was further combined with sequence motif results and showed that conserved residues of GCH1 and PTPS were located within the identified key structural sites modulating the proteins' conformational rearrangement. The characterized structural features and hotspot residues were regarded as potential allosteric sites of important value for the design and development of allosteric drugs. Both GCH1 and PTPS enzymes have never been targeted before and can provide an excellent opportunity to overcome the antimalarial antifolate drug resistance problem. The data presented in this thesis contribute to the understanding of the sequence, structure, and global dynamics of both GCH1 and PTPS, further disclose potential allosteric drug targeting sites and unique structural features of both enzymes that can establish a solid starting point for drug design and development of new antimalarial drugs of a novel mechanism of actions. Lastly, the reported force field parameters will be of value for MD simulations for future in-silico drug discovery studies involving the two enzymes and other enzymes with the same Zn2+ binding motifs and coordination environments. The impact of this research can facilitate the discovery of new effective antimalarial medicines with novel mechanisms of action. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-04-08
- Authors: Khairallah, Afrah Yousif Huseein
- Date: 2022-04-08
- Subjects: Antimalarials , Plasmodium falciparum , Malaria Chemotherapy , Malaria Africa , Drug resistance , Drug development , Molecular dynamics
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/233784 , vital:50127 , DOI 10.21504/10962/233784
- Description: Malaria remains a public health problem and a high burden of disease, especially in developing countries. The unicellular protozoan malaria parasite of the genus Plasmodium infects about a quarter of a billion people annually, with an estimated 409 000 death cases. The majority of malaria cases occurred in Africa; hence, the region is regarded as endemic for malaria. Global efforts to eradicate the disease led to a decrease in morbidity and mortality rates. However, an enormous burden of malaria infection remains, and it cannot go unnoticed. Countries with limited resources are more affected by the disease, mainly on its public health and socio-economic development, due to many factors besides malaria itself, such as lack of access to adequate, affordable treatments and preventative regimes. Furthermore, the current antimalarial drugs are losing their efficacy because of parasite drug resistance. The emerged drug resistance has reduced the drug efficacy in clearing the parasite from the host system, causing prolonged illness and a higher risk of death. Therefore, the emerged antimalarial drug resistance has hindered the global efforts for malaria control and elimination and established an urgent need for new treatment strategies. When the resistance against classical antimalarial drugs emerged, the class of antifolate antimalarial medicines became the most common alternative. The antifolate antimalarial drugs target the malaria parasite de novo folate biosynthesis pathway by limiting folate derivates, which are essential for the parasite cell growth and survival. Yet again, the malaria parasite developed resistance against the available antifolate drugs, rendering the drugs ineffective in many cases. Given the previous success in targeting the malaria parasite de novo folate biosynthesis pathway, alternative enzymes within this pathway stand as good targets and can be explored to develop new antifolate drugs with novel mechanisms of action. The primary focus of this thesis is to contribute to the existing and growing knowledge of antimalarial drug discovery. The study aims to characterise the malaria parasite de novo folate synthesis pathway enzymes guanosine-5'-triphosphate (GTP) cyclohydrolase I (GCH1) and 6-pyruvoyl tetrahydropterin synthase (PTPS) as alternative drug targets for malaria treatment by using computational approaches. Further, discover new allosteric drug targeting sites within the two enzymes' 3D structures for future drug design and discovery. Sequence and structural analysis were carried out to characterise and pinpoint the two enzymes' unique sequence and structure-based features. From the analyses, key sequence and structure differences were identified between the malaria parasite enzymes relative to their human homolog; the identified sites can aid significantly in designing and developing new antimalarial antifolate drugs with good selectivity toward the parasites’ enzymes. GCH1 and PTPS contain a catalytically essential metal ion in their active site; therefore, force field parameters were needed to study their active sites accurately during all-atom molecular dynamic simulations (MD). The force field parameters were derived through quantum mechanics potential energy surface scans of the metals bonded terms and evaluated via all-atom MD simulations. Proteins structural dynamics is imperative for many biological processes; thus, it is essential to consider the structural dynamics of proteins whilst understanding their function. In this regard, the normal mode analysis (NMA) approach based on the elastic network model (ENM) was employed to study the intrinsic dynamics and conformations changes of GCH1 and PTPS enzymes. The NMA disclosed essential structural information about the protein’s intrinsic dynamics and mechanism of allosteric modulation of their binding properties, further highlighting regions that govern their conformational changes. The analysis also disclosed hotspot residues that are crucial for the proteins' fold stability and function. The NMA was further combined with sequence motif results and showed that conserved residues of GCH1 and PTPS were located within the identified key structural sites modulating the proteins' conformational rearrangement. The characterized structural features and hotspot residues were regarded as potential allosteric sites of important value for the design and development of allosteric drugs. Both GCH1 and PTPS enzymes have never been targeted before and can provide an excellent opportunity to overcome the antimalarial antifolate drug resistance problem. The data presented in this thesis contribute to the understanding of the sequence, structure, and global dynamics of both GCH1 and PTPS, further disclose potential allosteric drug targeting sites and unique structural features of both enzymes that can establish a solid starting point for drug design and development of new antimalarial drugs of a novel mechanism of actions. Lastly, the reported force field parameters will be of value for MD simulations for future in-silico drug discovery studies involving the two enzymes and other enzymes with the same Zn2+ binding motifs and coordination environments. The impact of this research can facilitate the discovery of new effective antimalarial medicines with novel mechanisms of action. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-04-08
Synthesis, characterisation and evaluation of benzoxaborole-based hybrids as antiplasmodial agents
- Authors: Gumbo, Maureen
- Date: 2017
- Subjects: Malaria Chemotherapy , Antimalarials , Boron compounds , Drug resistance , Plasmodium falciparum , Drug development
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/59193 , vital:27456
- Description: Malaria is a mosquito-borne disease, which continues to pose a threat to the entire humanity. About 40% of the world population is estimated to be at risk of infections by malaria. Despite efforts undertaken by scientific community, government entities and international organizations, malaria is still rampant. The major problem is drug resistance, where the Plasmodium spp have over the past decades developed drug resistance against available drugs. In order to counter this problem, novel antimalarial drugs that are efficacious and with novel mode of action are of great necessity. Benzoxaborole derivatives have been shown to exhibit promising antimalarial activity against Plasmodium falciparum strains. Previous studies reported on the compounds such as 6-(2- (alkoxycarbonyl)pyrazinyl-5-oxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles, which showed good antimalarial activity against both W7 and 3D7 strains without significant toxicity. On the other hand, chloroquine (CQ) and cinnamic acids have a wide variety of biological activity including antimalarial activity. Herein, a hybridisation strategy was employed to synthesise new CQ-benzoxaborole and cinnamoyl-benzoxaborole hybrids. CQ-Benzoxaborole 2.12a-c and cinnamoylbenzoxaborole 2.11a-g hydrid molecules were synthesised in low to good yields. Their structural identities were confirmed using conventional spectroscopic techniques (1H and 13C NMR, and mass spectrometry). CQ-benzoxaborole compounds, however, showed instability, and only 2.12b was used for in vitro biological assay and showed activity comparable to CQ. Furthermore, in vitro biological assay revealed that compounds 2.11a-g poorly inhibited the growth of P. falciparum parasites. Interestingly, these compounds, however, exhibited satisfactory activity against Trypanosoma brucei with IC50 = 0.052 μM for compound 2.11g. The cell cytotoxicity assay of all final compounds confirmed that all CQ-benzoxaborole 2.12b and cinnamoyl-benzoxaborole 2.11a-g hybrids were non-toxic against HeLa cell lines. However, efforts to further expand the structure-activity relationship (SAR) of CQbenzoxaborole by increasing the length of the linker with one extra carbon (Scheme 2.10) were not possible as an important precursor 6-formylbenzoxaborole 2.29 could not be synthesized in sufficient yields. , Thesis (MSc) -- Faculty of Faculty of Science, Chemistry, 2017
- Full Text:
- Date Issued: 2017
- Authors: Gumbo, Maureen
- Date: 2017
- Subjects: Malaria Chemotherapy , Antimalarials , Boron compounds , Drug resistance , Plasmodium falciparum , Drug development
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/59193 , vital:27456
- Description: Malaria is a mosquito-borne disease, which continues to pose a threat to the entire humanity. About 40% of the world population is estimated to be at risk of infections by malaria. Despite efforts undertaken by scientific community, government entities and international organizations, malaria is still rampant. The major problem is drug resistance, where the Plasmodium spp have over the past decades developed drug resistance against available drugs. In order to counter this problem, novel antimalarial drugs that are efficacious and with novel mode of action are of great necessity. Benzoxaborole derivatives have been shown to exhibit promising antimalarial activity against Plasmodium falciparum strains. Previous studies reported on the compounds such as 6-(2- (alkoxycarbonyl)pyrazinyl-5-oxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles, which showed good antimalarial activity against both W7 and 3D7 strains without significant toxicity. On the other hand, chloroquine (CQ) and cinnamic acids have a wide variety of biological activity including antimalarial activity. Herein, a hybridisation strategy was employed to synthesise new CQ-benzoxaborole and cinnamoyl-benzoxaborole hybrids. CQ-Benzoxaborole 2.12a-c and cinnamoylbenzoxaborole 2.11a-g hydrid molecules were synthesised in low to good yields. Their structural identities were confirmed using conventional spectroscopic techniques (1H and 13C NMR, and mass spectrometry). CQ-benzoxaborole compounds, however, showed instability, and only 2.12b was used for in vitro biological assay and showed activity comparable to CQ. Furthermore, in vitro biological assay revealed that compounds 2.11a-g poorly inhibited the growth of P. falciparum parasites. Interestingly, these compounds, however, exhibited satisfactory activity against Trypanosoma brucei with IC50 = 0.052 μM for compound 2.11g. The cell cytotoxicity assay of all final compounds confirmed that all CQ-benzoxaborole 2.12b and cinnamoyl-benzoxaborole 2.11a-g hybrids were non-toxic against HeLa cell lines. However, efforts to further expand the structure-activity relationship (SAR) of CQbenzoxaborole by increasing the length of the linker with one extra carbon (Scheme 2.10) were not possible as an important precursor 6-formylbenzoxaborole 2.29 could not be synthesized in sufficient yields. , Thesis (MSc) -- Faculty of Faculty of Science, Chemistry, 2017
- Full Text:
- Date Issued: 2017
Studies towards the development of novel antimalarial agents
- Authors: Adeyemi, Christiana Modupe
- Date: 2015
- Subjects: Antimalarials , Malaria , Drug resistance , Drug development , Enzyme inhibitors , Plasmodium
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54645 , vital:26596
- Description: Considerable efforts have been made in the modification of existing antimalarial drugs, and the support of incentive programmes have led to a drastic decrease in malaria cases reported by WHO during the past 6 years. However, the development of drug resistance threatens the eradication of this deadly disease and has prompted research on the synthesis of novel antimalarial drugs. Our research has involved the design and synthesis of novel benzylated phosphonate esters as potential 1-deoxy-D-xylose-5-phosphate reductoisomerase (DXR) inhibitors. A series of amidoalkylphosphonate esters were obtained by reacting various 3-subsituted anilines and heterocyclic amines with chloroalkanoyl chlorides and reacting the resulting chloroalkanamides with triethyl phosphite using Michaelis-Arbuzov methodology. Benzylation of the phosphonate esters afforded a series of novel N-benzylated derivatives in good yields and these compounds were fully characterised by NMR and HRMS methods. Several approaches to the introduction of a benzyl group at the C-2 position of the phosphonate ester derivatives have been explored, leading unexpectedly to the isolation of unprecedented tetrahydrofuranyl derivatives. Studies towards the preparation of potential bi-functional PfDXR / HIV-1 RT inhibitors have also been initiated. Preliminary in silico docking studies of selected non-benzylated and benzylated phosphonated derivatives into the Pf-DXR active-site has provided useful insight into the binding potential of these ligands. Bioassays have revealed a very low toxicity for all the synthesised phosphonated compounds and a number of these ligands also exhibit a promising inhibitory activity against the Plasmodium parasite.
- Full Text:
- Date Issued: 2015
- Authors: Adeyemi, Christiana Modupe
- Date: 2015
- Subjects: Antimalarials , Malaria , Drug resistance , Drug development , Enzyme inhibitors , Plasmodium
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54645 , vital:26596
- Description: Considerable efforts have been made in the modification of existing antimalarial drugs, and the support of incentive programmes have led to a drastic decrease in malaria cases reported by WHO during the past 6 years. However, the development of drug resistance threatens the eradication of this deadly disease and has prompted research on the synthesis of novel antimalarial drugs. Our research has involved the design and synthesis of novel benzylated phosphonate esters as potential 1-deoxy-D-xylose-5-phosphate reductoisomerase (DXR) inhibitors. A series of amidoalkylphosphonate esters were obtained by reacting various 3-subsituted anilines and heterocyclic amines with chloroalkanoyl chlorides and reacting the resulting chloroalkanamides with triethyl phosphite using Michaelis-Arbuzov methodology. Benzylation of the phosphonate esters afforded a series of novel N-benzylated derivatives in good yields and these compounds were fully characterised by NMR and HRMS methods. Several approaches to the introduction of a benzyl group at the C-2 position of the phosphonate ester derivatives have been explored, leading unexpectedly to the isolation of unprecedented tetrahydrofuranyl derivatives. Studies towards the preparation of potential bi-functional PfDXR / HIV-1 RT inhibitors have also been initiated. Preliminary in silico docking studies of selected non-benzylated and benzylated phosphonated derivatives into the Pf-DXR active-site has provided useful insight into the binding potential of these ligands. Bioassays have revealed a very low toxicity for all the synthesised phosphonated compounds and a number of these ligands also exhibit a promising inhibitory activity against the Plasmodium parasite.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »