Effects of precipitating electrons in the ionosphere
- Authors: Haschick, Aubrey D
- Date: 1974
- Subjects: Electrons , Electron precipitation , Ionosphere , Ionospheric electron density
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5526 , http://hdl.handle.net/10962/d1012220
- Description: As early as 1896, around the time of the discovery of the electron by J.J. Thompson, Birkeland was led to propose that aurorae were caused by fast moving electrons or similarly charged particles emitted by the sun and 'sucked in towards' the auroral zones by the geomagnetic field. He later supported this idea by firing electrons at a dipole field surrounding a sphere covered with a fluorescent coating. Extensive ground based observations of auroral features eventually led, in 1950, to the initial direct evidence of the fact that auroral emissions are due to energetic charged particles, consisting partly of protons, entering the earth's atmosphere (Meinel, 1951). However, it was only in 1952 and 1953 that the first measurements of what was later interpreted as bremsstrahlung X- rays from precipitating electrons were made at auroral latitudes. (Meredith et aI, 1955) During the IGY, 1957 - 1958, a number of rockets were fired through and near, visible aurorae and large fluxes of low energy electrons were detected ... Intro., p. 1.
- Full Text:
- Date Issued: 1974
Electron precipitation and ionospheric disturbance
- Authors: Torr, Marsha R
- Date: 1966
- Subjects: Electrons , Electron precipitation , Ionosphere , Ionospheric electron density
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5509 , http://hdl.handle.net/10962/d1007691
- Description: From Introduction: The minimum in the scalar magnitude of the geographic total field, which lies off the coast of Brazil, allows the mirror points of trapped particles to dip low into the atmosphere over the South Atlantic Ocean, resulting in two regions of maximum intensity of preciptated particles in that region, one from the inner belt and one from the outer. High charged particle fluxes have been observed at low altitudes over these regions by satellites Sputnik 5 and 6 (Ginsburg et al, 1961) and Discoverer 31 (Seward and Kornblum, 1963) amongst others. The more southerly of these two regions acts as a sink for electrons from the outer radiation belt and will be referred to in what follows as the Southern Radiation Anomaly. Gladhill and van Rooyen (1963) predicted that the energy deposited in the upper atmosphere by these charged particles would be sufficient to give rise to enhanced geophysical effects such as auroral emission, X-rays and ionization and heating of the upper atmosphere in this region. Although some of these effects have been correlated with precipitated electrons, no definite relation had until now been established between ionospheric effects and precipitated particles. The aim of this thesis was to investigate such a relationship and the results were extremely successful. It will be shown conclusively in what follows, that the precipitation of electrons can account for the ionospheric disturbances defined by a disturbance criterion at all stations around L=4. Part I describes the exploration of the radiation belts and the magnetosphere with rockets and satellites. The resulting theoretical models based on the observations are discussed. A brief review is given of the work that has been done to date to derive equations for the loss and replenishment of particles in the belts. Because of the complexity of these and the number of doubtful factors involved, a simple model of injection of electrons into the outer belt is devised, giving average values of trapped and precipitated electron fluxes at any point around L=4. In Part II, this model is employed together with the disturbance criterion of Gledhill and Torr (1965) to examine the relationship between ionospheric disturbances and electron fluxes. Also the energy range of the precipitated particles is examined.
- Full Text:
- Date Issued: 1966
The South Atlantic radiation anomaly
- Authors: Van Rooyen, H O
- Date: 1964
- Subjects: Terrestrial radiation , Atmospheric radiation , Geomagnetism , Electron precipitation , South Atlantic Ocean -- Radiation
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5546 , http://hdl.handle.net/10962/d1013427
- Description: Part I. (1) An elementary treatment of the motion of charged particles in a magnetic field is presented. The concept of guiding centre motion is introduced, and is used in outlining the theory of particle drifts. (2 ) The motion of charged particles in the geomagnetic field is discussed, and the concept of adiabatic invariance introduced. (3) Mc Iliwains coordinates for mapping the distribution of charged particles trapped in the geometric field are defined and briefly discussed. (4) A survey of present knowledge of the Van Allen radiation zones is made. Particular attention is given to the distribution, characteristics, and variability of the trapped radiation. (5) The Cape Town magnetic anomaly, the Brazil radiation anomaly and the South Atlantic radiation anomaly are discussed. The electrons entering the South Atlantic radiation anomaly are shown to be those monitored over Iowa by the US satellite Injun I. Part 11. (1) It is shown how the geomagnetic field can, at high altitudes and over relatively short distances, be approximated by the field of a monopole. A new method is developed which enables one to plot the energy absorbed from an electron (which moves in a monopole field in the atmosphere) against altitude, given the initial energy and pitch angle of the electron. Some numerical computations using this method are described, and the results discussed. These results are used, in conjunction with US satellite Injun I for the Iowa region, to estimate the energy inout to the atmosphere in the South Atlantic radiation anomaly. The main approximations and simplifying assumptions made in this treatment, are discussed. (2) Geophysical effects generally recognized to be connected with the precipitation of charged particles are discussed. In the course of this discussion the two main theories of the connection between the radiation zones and the auroras are examined. (3) A preliminary discussion, based on the work summarized in point (1) of detectable geophysical events associated with the precipitation of electrons into the South Atlantic radiation anomaly is given. It is concluded that auroral emission, X-ray bursts, and ionospheric ionization in the E region should be more frequent and pronounced in the South Atlantic radiation anomaly than in any other region of comparable invariant latitudes and that the effects of atmospheric heating by precipitated electrons should be detectable over the anomaly. (4) An assessment is made of the value of the method referred to in point (1). Suggestions for its modification and extension are put forward. It is suggested that if more extensive rocket and satellite data on the low energy component of the electron flux become available, this method can be employed in a rigorous theoretical investigation of the South Atlantic radiation anomaly. Summary, p. 98-100.
- Full Text:
- Date Issued: 1964