Atmospheric pressure metal-organic vapour phase epitaxial growth of InAs/GaSb strained layer superlattices
- Authors: Miya, Senzo Simo
- Date: 2013
- Subjects: Gallium arsenide semiconductors , Organometallic compounds , Compound semiconductors , Metal organic chemical vapor deposition , Superlattices as materials , Epitaxy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10557 , http://hdl.handle.net/10948/d1020866
- Description: The importance of infrared (IR) technology (for detection in the 3-5 μm and 8-14 μm atmospheric windows) has spread from military applications to civilian applications since World War II. The commercial IR detector market in these wavelength ranges is dominated by mercury cadmium telluride (MCT) alloys. The use of these alloys has, however, been faced with technological difficulties. One of the materials that have been tipped to be suitable to replace MCT is InAs/InxGa1-xSb strained layer superlattices (SLS’s). Atmospheric pressure metal-organic vapour phase epitaxy (MOVPE) has been used to grow InAs/GaSb strained layer superlattices (SLS’s) at 510 °C in this study. This is a starting point towards the development of MOVPE InAs/InxGa1-xSb SLS’s using the same system. Before the SLS’s could be attempted, the growth parameters for GaSb were optimised. Growth parameters for InAs were taken from reports on previous studies conducted using the same reactor. Initially, trimethylgallium, a source that has been used extensively in the same growth system for the growth of GaSb and InxGa1-xSb was intended to be used for gallium species. The high growth rates yielded by this source were too large for the growth of SLS structures, however. Thus, triethylgallium (rarely used for atmospheric pressure MOVPE) was utilized. GaSb layers (between 1 and 2 μm thick) were grown at two different temperatures (550 °C and 510 °C) with a varying V/III ratio. A V/III ratio of 1.5 was found to be optimal at 550 °C. However, the low incorporation efficiency of indium into GaSb at this temperature was inadequate to obtain InxGa1-xSb with an indium mole fraction (x) of around 0.3, which had previously been reported to be optimal for the performance of InAs/InxGa1-xSb SLS’s, due to the maximum splitting of the valence mini bands for this composition. The growth temperature was thus lowered to 510 °C. This resulted in an increase in the optimum V/III ratio to 1.75 for GaSb and yielded much higher incorporation efficiencies of indium in InxGa1-xSb. However, this lower growth temperature also produced poorer surface morphologies for both the binary and ternary layers, due to the reduced surface diffusion of the adsorbed species. An interface control study during the growth of InAs/GaSb SLS’s was subsequently conducted, by investigating the influence of different gas switching sequences on the interface type and quality. It was noted that the growth of SLS’s without any growth interruptions at the interfaces leads to tensile strained SLS’s (GaAs-like interfaces) with a rather large lattice mismatch. A 5 second flow of TMSb over the InAs surface and a flow of H2 over GaSb surface yielded compressively strained SLS’s. Flowing TMIn for 1 second and following by a flow of TMSb for 4 seconds over the GaSb surface, while flowing H2 for 5 seconds over the InAs surface, resulted in SLS’s with GaAs-like interfacial layers and a reduced lattice mismatch. Temperature gradients across the surface of the susceptor led to SLS’s with different structural quality. High resolution x-ray diffraction (HRXRD) was used to determine the thicknesses as well as the type of interfacial layers. The physical parameters of the SLS’s obtained from simulating the HRXRD spectra were comparable to the parameters obtained from cross sectional transmission electron microscopy (XTEM) images. The thicknesses of the layers and the interface type played a major role in determining the cut-off wavelength of the SLS’s.
- Full Text:
- Date Issued: 2013
Epitaxial growth and characterisation of CuGaS2
- Authors: Branch, Matthew Stewart
- Date: 2006
- Subjects: Epitaxy , Chalcopyrite , Semiconductors
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10541 , http://hdl.handle.net/10948/438 , http://hdl.handle.net/10948/d1012893 , Epitaxy , Chalcopyrite , Semiconductors
- Description: In this work, the growth and characterisation of the chalcopyrite semiconductor CuGaS2 is presented. The purpose of this study is to gain a better understanding of the defect chemistry of this class of materials through a systematic study relating the structural and optical properties to the composition of thin films grown by metalorganic vapour phase epitaxy. Details associated with the optimisation of the growth process are presented in a format relating the changes in the composition and morphology to variations in the growth process. The structural properties of thin films grown on GaAs(001) substrates are described. A dominance of polycrystalline growth is found to occur for Cu-rich material, whereas near-stoichiometric to Ga-rich material is typified by epitaxial growth. Secondary phases are identified by X-ray diffractometry and Raman spectroscopy for severely non-stoichiometric material. In some cases, the formation of the cubic zincblende and CuPt polytype of CuGaS2 are identified by transmission electron microscopy. It will be shown that changes in the Cu/Ga ratio of the solid strongly influence the photoluminescence response of the layers. Weak excitonic luminescence is observed for both slightly Ga-rich and Cu-rich material. Near stoichiometric layers exhibit luminescence centered at ~2.4 eV. Cu-rich layers are dominated by a line occurring at ~2.1 eV, whereas a different line at ~2.25 eV dominates for Ga-rich layers. A clear picture emerges of the radiative mechanisms dominating for Cu-rich and Ga-rich layers.
- Full Text:
- Date Issued: 2006
Metalorganic vapour phase epitaxial growth and characterisation of Sb-based semiconductors
- Authors: Vankova, Viera
- Date: 2005
- Subjects: Compound semiconductors , Epitaxy , Organometallic compounds , Metal organic chemical vapor deposition
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10548 , http://hdl.handle.net/10948/d1019678
- Description: This study focuses on the growth and characterization of epitaxial InAs and InAs1-xSbx. Layers are grown on InAs, GaAs and GaSb substrates by metalorganic vapour phase epitaxy, using trimethylindium, trimethylantimony and arsine as precursors. The growth parameters (V/III ratio, Sb vapour phase compositions) are varied in the temperature range from 500 ºC to 700 ºC, in order to study the influence of these parameters on the structural, optical and electrical properties of the materials. The layers were assessed by X-ray diffraction, electron and optical microscopy, photoluminescence and Hall measurements. Furthermore, the influence of hydrogenation and annealing on the electrical and optical properties of GaSb was investigated. It is shown that the growth temperature and the V/III ratio play a vital role in the resulting surface morphology of homoepitaxial and heteroepitaxial InAs layers. Growth at low temperatures is found to promote three-dimensional growth in both cases, with improvements in the surface morphologies observed for higher growth temperatures. All the investigated epilayers are n-type. It is shown that the electrical properties of heteroepitaxial InAs epilayers are complicated by a competition between bulk conduction and conduction due to a surface accumulation and an interface layer. The low temperature photoluminescence spectra of homoepitaxial InAs are dominated by two transitions. These are identified as band-to-band/excitonic and donor-acceptor recombination. The incorporation efficiency of antimony (Sb) into InAs1-xSbx is dependent on the growth temperature and the V/III ratio. Under the growth conditions used in this study, the incorporation efficiency of Sb is controlled by the thermal stability of the two constituent binaries (i.e. InAs and InSb). Changes in the low temperature photoluminescence spectra are detected with increasing x. From temperature and laser power dependent measurements, the highest energy line is attributed to band-to-band/excitonic recombination, while the peak appearing approximately 15 meV below this line is assigned to donor-acceptor recombination. The origin of an additional “moving” peak observed for higher Sb mole fraction x is tentatively attributed to quasi-donor-acceptor-recombination, arising from increased impurity/defect concentrations and a higher compensation ratio in the material. However, the unusual behaviour of this peak may also be ascribed to the presence of some degree of ordering in InAsSb. The exposure of a semiconductor to a hydrogen plasma usually leads to the passivation of shallow and deep centres, thereby removing their electrical and optical activity. In this study, the passivation and thermal stability of the native acceptor in p-type GaSb is also investigated. It is shown that this acceptor can be passivated, where after improvements in the electrical and optical properties of GaSb are observed. Upon annealing the passivated samples above 300 °C, the acceptor is reactivated.
- Full Text:
- Date Issued: 2005