High-resolution hydraulic modelling as an approach to planning rehabilitation interventions in unchanneled valley-bottom palmiet wetlands: a case study of the Kromme River
- Authors: Langner, Wiebke
- Date: 2023-10-13
- Subjects: Hydraulic models , Prionium serratum , Wetland conservation South Africa Kromme River (Eastern Cape) , LiDAR , Fluvial geomorphology
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424610 , vital:72168
- Description: This study employs high-resolution hydraulic modelling techniques to inform the planning of rehabilitation interventions in unchanneled valley-bottom palmiet wetlands, using the upper Kromme River wetlands as a case study. It investigates the impact of geomorphic processes on the morphology of the valley, how changes in valley morphology affect the flow characteristics (velocity, stream power, depth) of the river, and how these changes affect the geomorphic dynamics of the wetlands. An aerial LiDAR survey was conducted for a 23km-long reach of the upper Kromme River where the wetlands are situated. A high-resolution (5 m) DTM was created from the LiDAR data to examine the valley morphology. Focusing on three major wetland basins, the relationship between valley morphology and geomorphic processes was examined using high-resolution imagery that accompanied the LiDAR survey and Google Satellite imagery. The hydraulic modelling software HEC-RAS was used to investigate the spatial variation in velocity, stream power, and water depth down the surveyed length of the river. The model outputs provide insight into the effect of valley morphology on flow characteristics. The river appears to have a graded longitudinal profile, such that there is a systematic reduction in slope down its length. Water flowing down the river works, through the processes of erosion and deposition, to control the longitudinal slope, channel planform, and geometry to create a valley with a gentle longitudinal slope (approximately 1%) and a broad, near-horizontal valley-bottom in the mountainous landscape of the Cape Fold Mountains. The overall form of the Kromme River valley and wetlands is primarily a consequence of repeated cycles of cutting and filling. Tributary alluvial fans control the initiation of gully erosion in the wetlands, but their effect is diminished in a downstream direction. Despite a 10-fold increase in discharge down the 23km length of river for a given flood magnitude, there is no significant increase in flow velocity, stream power, or depth in a downstream direction. Consequently, the kinetic energy of the water in the lower wetland basin is surprisingly low. These conditions favour the establishment of palmiet. Flows in eroded reaches are much higher than in non-eroded reaches where discharge is spread across a broad valley bottom. In terms of palmiet establishment and regeneration, this means that areas dominated by depositional processes are best suited to the establishment of palmiet. Based on this information, optimal sites to trial new wetland rehabilitation strategies that employ palmiet were selected. This work supports the importance of understanding the role of geomorphology in wetland structure and dynamics when approaching wetland rehabilitation and is likely to be more sympathetic to natural processes than current interventions. , Thesis (MSc) -- Faculty of Science, Geography, 2023
- Full Text:
- Date Issued: 2023-10-13
The regeneration of palmiet (prionium serratum) following hydrogeomorphic disturbance: a case study of the Kromme River wetland
- Authors: Van Eck, Caydon Daniël
- Date: 2022-10-14
- Subjects: Biogeomorphology South Africa Kromme Estuary (Eastern Cape) , Wetland ecology , Prionium serratum Regeneration , Fluvial geomorphology , River channels
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/365555 , vital:65759
- Description: The Kromme River wetland in the Eastern Cape of South Africa occupies a broad valley (up to 350 m wide) with a gentle longitudinal slope of less than 2 % that has been formed by cut-and-fill cycles that are initiated by trunk-tributary interactions. These hydrogeomorphic disturbance events trigger gully erosion and generate sediments, the coarse fraction of which is deposited less than 2 km downstream, leading to depositional floodout features that fill gullies headwards. This process has been occurring at intervals for at least 10 000 years, and as such pre-dates the introduction of European farming practices in the area. Plants that regenerate by colonising these features are thought to have evolved adaptions necessary to colonise intermittently produced bare sandy sediments. This study aimed to examine the regeneration ecology of palmiet (Prionium serratum), the dominant vegetation community within these cut-and-fill wetlands, by relating its regeneration characteristics to environmental factors in a reach of the Kromme River wetland that has experienced a recent hydrogeomorphic disturbance event (approximately 10 years before the commencement of this study). Palmiet was found to be regenerating on sedimentary deposits on beds of gullies and on depositional bars on the margins of gully beds. The large depositional floodout downstream of a large gully also favoured palmiet regeneration, where it was found to be regenerating along not only the active channel, but also along old abandoned flow paths and sometimes areas well elevated above the channel. The geomorphic features that favoured palmiet regeneration were characterised by coarse-grained sediments (mean particle size approximately 310 μm) with low organic matter content (0.61 %), a low depth to the water table and low elevation above the thalweg (mean depth to water table is approximately 0.6 m), and a relatively close distance to the thalweg (< 10 m). This understanding of palmiet’s regeneration characteristics was viewed in relation to existing literature on undisturbed palmiet wetland plant communities and its reported contribution to conditions that favour wetland formation through gully filling, which allowed for the creation of a conceptual model of palmiet regeneration, colonisation and long-term persistence. This model was based on the Fluvial Biogeomorphic Succession concept. It suggests that palmiet’s interaction with the hydrogeomorphic environment throughout the different stages of its life cycle results in self-organising biogeomorphic landforms. Over hundreds of years, the reciprocal interactions between palmiet, sediments and water, fills gullies and restores valley bottoms, ultimately leading to the formation of a wetland landform. It is further proposed that through continued accretion, the geomorphic wetland landscape becomes more and more disconnected from the hydrogeomorphic dynamics of the fluvial system, such that the prevailing conditions begin to favour fynbos establishment, which may outcompete palmiet. , Thesis (MSc) -- Faculty of Science, Geography, 2022
- Full Text:
- Date Issued: 2022-10-14