Classification of the difficulty in accelerating problems using GPUs
- Authors: Tristram, Uvedale Roy
- Date: 2014
- Subjects: Graphics processing units , Computer algorithms , Computer programming , Problem solving -- Data processing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4699 , http://hdl.handle.net/10962/d1012978
- Description: Scientists continually require additional processing power, as this enables them to compute larger problem sizes, use more complex models and algorithms, and solve problems previously thought computationally impractical. General-purpose computation on graphics processing units (GPGPU) can help in this regard, as there is great potential in using graphics processors to accelerate many scientific models and algorithms. However, some problems are considerably harder to accelerate than others, and it may be challenging for those new to GPGPU to ascertain the difficulty of accelerating a particular problem or seek appropriate optimisation guidance. Through what was learned in the acceleration of a hydrological uncertainty ensemble model, large numbers of k-difference string comparisons, and a radix sort, problem attributes have been identified that can assist in the evaluation of the difficulty in accelerating a problem using GPUs. The identified attributes are inherent parallelism, branch divergence, problem size, required computational parallelism, memory access pattern regularity, data transfer overhead, and thread cooperation. Using these attributes as difficulty indicators, an initial problem difficulty classification framework has been created that aids in GPU acceleration difficulty evaluation. This framework further facilitates directed guidance on suggested optimisations and required knowledge based on problem classification, which has been demonstrated for the aforementioned accelerated problems. It is anticipated that this framework, or a derivative thereof, will prove to be a useful resource for new or novice GPGPU developers in the evaluation of potential problems for GPU acceleration.
- Full Text:
- Date Issued: 2014
- Authors: Tristram, Uvedale Roy
- Date: 2014
- Subjects: Graphics processing units , Computer algorithms , Computer programming , Problem solving -- Data processing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4699 , http://hdl.handle.net/10962/d1012978
- Description: Scientists continually require additional processing power, as this enables them to compute larger problem sizes, use more complex models and algorithms, and solve problems previously thought computationally impractical. General-purpose computation on graphics processing units (GPGPU) can help in this regard, as there is great potential in using graphics processors to accelerate many scientific models and algorithms. However, some problems are considerably harder to accelerate than others, and it may be challenging for those new to GPGPU to ascertain the difficulty of accelerating a particular problem or seek appropriate optimisation guidance. Through what was learned in the acceleration of a hydrological uncertainty ensemble model, large numbers of k-difference string comparisons, and a radix sort, problem attributes have been identified that can assist in the evaluation of the difficulty in accelerating a problem using GPUs. The identified attributes are inherent parallelism, branch divergence, problem size, required computational parallelism, memory access pattern regularity, data transfer overhead, and thread cooperation. Using these attributes as difficulty indicators, an initial problem difficulty classification framework has been created that aids in GPU acceleration difficulty evaluation. This framework further facilitates directed guidance on suggested optimisations and required knowledge based on problem classification, which has been demonstrated for the aforementioned accelerated problems. It is anticipated that this framework, or a derivative thereof, will prove to be a useful resource for new or novice GPGPU developers in the evaluation of potential problems for GPU acceleration.
- Full Text:
- Date Issued: 2014
GPF : a framework for general packet classification on GPU co-processors
- Authors: Nottingham, Alastair
- Date: 2012
- Subjects: Graphics processing units , Coprocessors , Computer network protocols , Computer networks -- Security measures , NVIDIA Corporation
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4661 , http://hdl.handle.net/10962/d1006662 , Graphics processing units , Coprocessors , Computer network protocols , Computer networks -- Security measures , NVIDIA Corporation
- Description: This thesis explores the design and experimental implementation of GPF, a novel protocol-independent, multi-match packet classification framework. This framework is targeted and optimised for flexible, efficient execution on NVIDIA GPU platforms through the CUDA API, but should not be difficult to port to other platforms, such as OpenCL, in the future. GPF was conceived and developed in order to accelerate classification of large packet capture files, such as those collected by Network Telescopes. It uses a multiphase SIMD classification process which exploits both the parallelism of packet sets and the redundancy in filter programs, in order to classify packet captures against multiple filters at extremely high rates. The resultant framework - comprised of classification, compilation and buffering components - efficiently leverages GPU resources to classify arbitrary protocols, and return multiple filter results for each packet. The classification functions described were verified and evaluated by testing an experimental prototype implementation against several filter programs, of varying complexity, on devices from three GPU platform generations. In addition to the significant speedup achieved in processing results, analysis indicates that the prototype classification functions perform predictably, and scale linearly with respect to both packet count and filter complexity. Furthermore, classification throughput (packets/s) remained essentially constant regardless of the underlying packet data, and thus the effective data rate when classifying a particular filter was heavily influenced by the average size of packets in the processed capture. For example: in the trivial case of classifying all IPv4 packets ranging in size from 70 bytes to 1KB, the observed data rate achieved by the GPU classification kernels ranged from 60Gbps to 900Gbps on a GTX 275, and from 220Gbps to 3.3Tbps on a GTX 480. In the less trivial case of identifying all ARP, TCP, UDP and ICMP packets for both IPv4 and IPv6 protocols, the effective data rates ranged from 15Gbps to 220Gbps (GTX 275), and from 50Gbps to 740Gbps (GTX 480), for 70B and 1KB packets respectively. , LaTeX with hyperref package
- Full Text:
- Date Issued: 2012
- Authors: Nottingham, Alastair
- Date: 2012
- Subjects: Graphics processing units , Coprocessors , Computer network protocols , Computer networks -- Security measures , NVIDIA Corporation
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4661 , http://hdl.handle.net/10962/d1006662 , Graphics processing units , Coprocessors , Computer network protocols , Computer networks -- Security measures , NVIDIA Corporation
- Description: This thesis explores the design and experimental implementation of GPF, a novel protocol-independent, multi-match packet classification framework. This framework is targeted and optimised for flexible, efficient execution on NVIDIA GPU platforms through the CUDA API, but should not be difficult to port to other platforms, such as OpenCL, in the future. GPF was conceived and developed in order to accelerate classification of large packet capture files, such as those collected by Network Telescopes. It uses a multiphase SIMD classification process which exploits both the parallelism of packet sets and the redundancy in filter programs, in order to classify packet captures against multiple filters at extremely high rates. The resultant framework - comprised of classification, compilation and buffering components - efficiently leverages GPU resources to classify arbitrary protocols, and return multiple filter results for each packet. The classification functions described were verified and evaluated by testing an experimental prototype implementation against several filter programs, of varying complexity, on devices from three GPU platform generations. In addition to the significant speedup achieved in processing results, analysis indicates that the prototype classification functions perform predictably, and scale linearly with respect to both packet count and filter complexity. Furthermore, classification throughput (packets/s) remained essentially constant regardless of the underlying packet data, and thus the effective data rate when classifying a particular filter was heavily influenced by the average size of packets in the processed capture. For example: in the trivial case of classifying all IPv4 packets ranging in size from 70 bytes to 1KB, the observed data rate achieved by the GPU classification kernels ranged from 60Gbps to 900Gbps on a GTX 275, and from 220Gbps to 3.3Tbps on a GTX 480. In the less trivial case of identifying all ARP, TCP, UDP and ICMP packets for both IPv4 and IPv6 protocols, the effective data rates ranged from 15Gbps to 220Gbps (GTX 275), and from 50Gbps to 740Gbps (GTX 480), for 70B and 1KB packets respectively. , LaTeX with hyperref package
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »