The isolation of muscle activity and ground reaction force patterns associated with postural control in four load manipulation tasks
- Authors: Pettengell, Clare Louise
- Date: 2010
- Subjects: Physical fitness , Exercise , Materials handling , Manual work , Lifting and carrying
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5125 , http://hdl.handle.net/10962/d1005203 , Physical fitness , Exercise , Materials handling , Manual work , Lifting and carrying
- Description: Although much effort has been placed into the reduction of risks associated with manual materials handling, risk of musculoskeletal disorder development remains high. This may be due to the additional muscle activity necessary for the maintenance of postural equilibrium during work tasks. This research proposes that postural control and subsequent additional muscle activity is influenced by the magnitude of the external load and the degree of body movement. The objective of this research was to identify whether performing tasks with increased external load and with a greater degree of trunk motion places additional strain on the musculoskeletal system in excess of that imposed by task demands. Twenty-four male and twenty-four female subjects performed four load manipulation tasks under three loading conditions (0.8kg, 1.6kg, and 4kg). Each task comprised of a static and dynamic condition. For the static condition, subjects maintained a stipulated posture for ten seconds. The dynamic condition required subjects to move and replace a box once every three seconds, such that a complete lift and lower cycle was performed in six seconds. Throughout task completion, muscle activity of six pairs of trunk muscles were analysed using surface electromyography. This was accompanied by data regarding ground reaction forces obtained through the use of a force platform. After the completion of each condition subjects were required to identify and rate body discomfort. Differential analysis was used to isolate the muscle activity and ground reaction forces attributed to increased external load and increased trunk movement. It was found that the heaviest loading conditions (4kg) resulted in significantly greater (p<0.05) muscle activation in the majority of muscles during all tasks investigated. The trend of muscle activity attributed to load was similar in all significantly altered muscles and activation was greatest in the heaviest loading condition. A degree of movement efficiency occurred in some muscles when manipulating loads of 0.8kg and 1.6kg. At greater loads, this did not occur suggesting that heavier loading conditions result in additional strain on the body in excess of that imposed by task demands. In manipulated data, trend of vertical ground reaction forces increased with increased load in all tasks. Sagittal movement of the centre of pressure attributed to load was significantly affected in manipulated data in the second movement phase of the “hip shoulder” task and the second movement phase of the “hip twist” task. The “hip reach” task was most affected by increased load magnitude as muscle activity attributed to load was significantly different (p<0.05) under increased loading conditions in both movement phases in all muscles. Further, a significant interactional effect (p<0.05) between condition and data point was found in all muscles with the exception of the right and left lumbar erector spinae during the second movement phase of the “hip reach” task. Muscle activity associated with increased trunk motion resulted in additional strain on the trunk muscles in the “hip shoulder” and “hip reach” tasks as muscle activity associated with the static component of each of the above tasks was greater than that of the dynamic tasks. Trend of ground reaction forces attributed to increased trunk motion generally increased under increased loading conditions. Additionally, a significant interactional effect (p<0.05) between load and muscle activity pattern was found in all muscles during all tasks, with the exception of the right rectus abdominis in the first movement phase of the “hip shoulder’ task, the left rectus abdominis in the second movement phase of the “hip knee” task and the right latissimus dorsi during the first movement phase of the “hip twist” task. This was accompanied by a significant interactional effect (p<0.05) between load and sagittal centre of pressure movement attributed to load, in both movement phases of all tasks investigated. From this research it can be proposed that guidelines may underestimate risk and subsequently under predict the strain in tasks performed with greater external loads as well as tasks which require a greater degree of trunk motion. Therefore, this study illustrates the importance of the consideration of the muscle activity necessary to maintain postural equilibrium in overall load analyses.
- Full Text:
- Date Issued: 2010
- Authors: Pettengell, Clare Louise
- Date: 2010
- Subjects: Physical fitness , Exercise , Materials handling , Manual work , Lifting and carrying
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5125 , http://hdl.handle.net/10962/d1005203 , Physical fitness , Exercise , Materials handling , Manual work , Lifting and carrying
- Description: Although much effort has been placed into the reduction of risks associated with manual materials handling, risk of musculoskeletal disorder development remains high. This may be due to the additional muscle activity necessary for the maintenance of postural equilibrium during work tasks. This research proposes that postural control and subsequent additional muscle activity is influenced by the magnitude of the external load and the degree of body movement. The objective of this research was to identify whether performing tasks with increased external load and with a greater degree of trunk motion places additional strain on the musculoskeletal system in excess of that imposed by task demands. Twenty-four male and twenty-four female subjects performed four load manipulation tasks under three loading conditions (0.8kg, 1.6kg, and 4kg). Each task comprised of a static and dynamic condition. For the static condition, subjects maintained a stipulated posture for ten seconds. The dynamic condition required subjects to move and replace a box once every three seconds, such that a complete lift and lower cycle was performed in six seconds. Throughout task completion, muscle activity of six pairs of trunk muscles were analysed using surface electromyography. This was accompanied by data regarding ground reaction forces obtained through the use of a force platform. After the completion of each condition subjects were required to identify and rate body discomfort. Differential analysis was used to isolate the muscle activity and ground reaction forces attributed to increased external load and increased trunk movement. It was found that the heaviest loading conditions (4kg) resulted in significantly greater (p<0.05) muscle activation in the majority of muscles during all tasks investigated. The trend of muscle activity attributed to load was similar in all significantly altered muscles and activation was greatest in the heaviest loading condition. A degree of movement efficiency occurred in some muscles when manipulating loads of 0.8kg and 1.6kg. At greater loads, this did not occur suggesting that heavier loading conditions result in additional strain on the body in excess of that imposed by task demands. In manipulated data, trend of vertical ground reaction forces increased with increased load in all tasks. Sagittal movement of the centre of pressure attributed to load was significantly affected in manipulated data in the second movement phase of the “hip shoulder” task and the second movement phase of the “hip twist” task. The “hip reach” task was most affected by increased load magnitude as muscle activity attributed to load was significantly different (p<0.05) under increased loading conditions in both movement phases in all muscles. Further, a significant interactional effect (p<0.05) between condition and data point was found in all muscles with the exception of the right and left lumbar erector spinae during the second movement phase of the “hip reach” task. Muscle activity associated with increased trunk motion resulted in additional strain on the trunk muscles in the “hip shoulder” and “hip reach” tasks as muscle activity associated with the static component of each of the above tasks was greater than that of the dynamic tasks. Trend of ground reaction forces attributed to increased trunk motion generally increased under increased loading conditions. Additionally, a significant interactional effect (p<0.05) between load and muscle activity pattern was found in all muscles during all tasks, with the exception of the right rectus abdominis in the first movement phase of the “hip shoulder’ task, the left rectus abdominis in the second movement phase of the “hip knee” task and the right latissimus dorsi during the first movement phase of the “hip twist” task. This was accompanied by a significant interactional effect (p<0.05) between load and sagittal centre of pressure movement attributed to load, in both movement phases of all tasks investigated. From this research it can be proposed that guidelines may underestimate risk and subsequently under predict the strain in tasks performed with greater external loads as well as tasks which require a greater degree of trunk motion. Therefore, this study illustrates the importance of the consideration of the muscle activity necessary to maintain postural equilibrium in overall load analyses.
- Full Text:
- Date Issued: 2010
The effect of load and technique on biomechanical and perceptual responses during dynamic pushing and pulling
- Authors: Desai, Sheena Dhiksha
- Date: 2009
- Subjects: Work -- Physiological aspects , Biomechanics , Human engineering , Lifting and carrying
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5109 , http://hdl.handle.net/10962/d1005187 , Work -- Physiological aspects , Biomechanics , Human engineering , Lifting and carrying
- Description: Changes in the industrial job profile, from lifting and lowering to repetitive dynamic pushing and pulling have been facilitated through the use of manual vehicles, aimed at minimising the workload. Yet, the demands of pushing and pulling have not been well documented. Using measures of the horizontal component of the hand forces, spinal kinematics, muscle activity at various sites on the upper body and body discomfort ratings, this study aimed at quantifying the biomechanical and perceptual demands of various dynamic push/pull techniques. 36 healthy male participants performed two-handed forward pushing, two-handed backward pulling and one-handed forward pulling, employing an industrial pallet jack supporting two loads of 250kg or 500kg. While no single technique was definitively identified as preferable regarding hand forces, pushing at 500kg elicited higher initial and sustained forces (p<0.05) than one- and two-handed pulling respectively. Increments in load mass from 250kg to 500kg resulted in significant differences in the initial, sustained and ending forces. With regard to spinal kinematics in the sagittal plane, two-handed pulling elicited the highest trunk flexion, and may therefore expose individuals to prolonged forward bending. Generally this technique was found to evoke the highest sagittal responses. Spinal kinematic measures in the lateral and transverse planes suggested that one-handed pulling was accompanied by the highest measures, and hence the greatest risk of developing lower back disorders related to this plane. Although various combinations of muscles were active during each technique, one-handed pulling and pushing, most often induced the highest muscle activation levels and two-handed pulling, the lowest. While erector spinae evidenced no significant differences between techniques at each load or between loads for the same technique, activation levels were high under all conditions. Perceptual ratings of body discomfort revealed that not only is the upper body susceptible to injuries during pushing and pulling, but also that the lower extremities may have a considerable role to play in these tasks, with the calves being a particular area of concern. Findings concluded that symmetrical pushing and pulling tasks are preferable.
- Full Text:
- Date Issued: 2009
- Authors: Desai, Sheena Dhiksha
- Date: 2009
- Subjects: Work -- Physiological aspects , Biomechanics , Human engineering , Lifting and carrying
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5109 , http://hdl.handle.net/10962/d1005187 , Work -- Physiological aspects , Biomechanics , Human engineering , Lifting and carrying
- Description: Changes in the industrial job profile, from lifting and lowering to repetitive dynamic pushing and pulling have been facilitated through the use of manual vehicles, aimed at minimising the workload. Yet, the demands of pushing and pulling have not been well documented. Using measures of the horizontal component of the hand forces, spinal kinematics, muscle activity at various sites on the upper body and body discomfort ratings, this study aimed at quantifying the biomechanical and perceptual demands of various dynamic push/pull techniques. 36 healthy male participants performed two-handed forward pushing, two-handed backward pulling and one-handed forward pulling, employing an industrial pallet jack supporting two loads of 250kg or 500kg. While no single technique was definitively identified as preferable regarding hand forces, pushing at 500kg elicited higher initial and sustained forces (p<0.05) than one- and two-handed pulling respectively. Increments in load mass from 250kg to 500kg resulted in significant differences in the initial, sustained and ending forces. With regard to spinal kinematics in the sagittal plane, two-handed pulling elicited the highest trunk flexion, and may therefore expose individuals to prolonged forward bending. Generally this technique was found to evoke the highest sagittal responses. Spinal kinematic measures in the lateral and transverse planes suggested that one-handed pulling was accompanied by the highest measures, and hence the greatest risk of developing lower back disorders related to this plane. Although various combinations of muscles were active during each technique, one-handed pulling and pushing, most often induced the highest muscle activation levels and two-handed pulling, the lowest. While erector spinae evidenced no significant differences between techniques at each load or between loads for the same technique, activation levels were high under all conditions. Perceptual ratings of body discomfort revealed that not only is the upper body susceptible to injuries during pushing and pulling, but also that the lower extremities may have a considerable role to play in these tasks, with the calves being a particular area of concern. Findings concluded that symmetrical pushing and pulling tasks are preferable.
- Full Text:
- Date Issued: 2009
Laboratory investigation of a load carriage task observed in forestry
- Authors: Furney, Sheena Elizabeth
- Date: 2007
- Subjects: Work -- Physiological aspects , Foresters -- Workload , Human engineering , Lifting and carrying
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5145 , http://hdl.handle.net/10962/d1008188 , Work -- Physiological aspects , Foresters -- Workload , Human engineering , Lifting and carrying
- Description: The objective of the present study was to investigate and compare the human responses to two load carriage tasks performed with three different load masses and on three different gradients. The task of carrying hydrogel in one hand was observed in a silviculture industry and crude physiological and perceptual responses were measured. This task was simulated in a laboratory setting together with a suggested intervention of backpack carriage. Eighteen conditions were established which consisted of the two modes of carriage and a combination of three load masses (9kg, 12kg and 15kg) and three gradients (5%, 10% and 15%). Twenty eight Rhodes University female students comprised the sample and the experimental procedures were conducted on a Quinton treadmill. Each participant was required to complete nine of the eighteen conditions which were each four minutes in duration. Postural changes were assessed using lateral and posterior digital images taken at the second and fourth minute and compression and shearing forces were estimated with the ErgolmagerTM Physiological responses (heart rate, ventilation and metabolic responses) were measured continuously with the Quark b² and perceptual responses ('central' and 'local' RPE) were measured every minute during the experimentation and body discomfort was rated at the completion of each condition. Overall responses revealed that hand carriage (146 bt.min⁻¹ , 25.09 mIO₂. kg-l.min⁻¹) was generally found to be more physiologically stressful than backpack carriage (130 bt.min⁻¹, 22.15 mIO₂.kg⁻¹ .min⁻¹) independent of load mass and gradient. Physiological responses were higher (113 bt.min-1 to 174 bt.min⁻¹ ) in responses to increasing gradient as opposed to increasing load mass (104 bt.min-1 to 153 bt.min⁻¹ ) for both backpack and hand carriage. Categorisation using the guidelines of Sanders and McCormick (1993) allowed for classification of conditions, with respect to physiological responses, into 'moderate', 'heavy' and 'very heavy' stress. For almost all of the physiological responses the majority of conditions which were classified as 'moderate' were backpack carriage conditions and the conditions classified as 'very heavy' were mostly hand carriage conditions. In terms of postural responses hand carriage resulted in more strain and greater compression and shearing forces on the spine. In terms of the compression forces increasing gradient had a greater affect on backpack carriage (681 N to 935 N) compared to hand carriage (570N to 793N). In contrast, increasing load mass had a larger affect on hand carriage postures and compression forces (751 N to 935N) in comparison to backpack carriage (723N to 780N). Shearing forces were found to be worse in hand carriage conditions overall. Although participants generally underrated perceived exertion in relation to cardiorespiratory responses, these perceptions revealed that backpack carriage, with a mean 'central' RPE of 12 compared to 11 for hand carriage, was somewhat preferred to hand carriage and that increasing gradient was perceived to be marginally more straining than increasing load mass.
- Full Text:
- Date Issued: 2007
- Authors: Furney, Sheena Elizabeth
- Date: 2007
- Subjects: Work -- Physiological aspects , Foresters -- Workload , Human engineering , Lifting and carrying
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5145 , http://hdl.handle.net/10962/d1008188 , Work -- Physiological aspects , Foresters -- Workload , Human engineering , Lifting and carrying
- Description: The objective of the present study was to investigate and compare the human responses to two load carriage tasks performed with three different load masses and on three different gradients. The task of carrying hydrogel in one hand was observed in a silviculture industry and crude physiological and perceptual responses were measured. This task was simulated in a laboratory setting together with a suggested intervention of backpack carriage. Eighteen conditions were established which consisted of the two modes of carriage and a combination of three load masses (9kg, 12kg and 15kg) and three gradients (5%, 10% and 15%). Twenty eight Rhodes University female students comprised the sample and the experimental procedures were conducted on a Quinton treadmill. Each participant was required to complete nine of the eighteen conditions which were each four minutes in duration. Postural changes were assessed using lateral and posterior digital images taken at the second and fourth minute and compression and shearing forces were estimated with the ErgolmagerTM Physiological responses (heart rate, ventilation and metabolic responses) were measured continuously with the Quark b² and perceptual responses ('central' and 'local' RPE) were measured every minute during the experimentation and body discomfort was rated at the completion of each condition. Overall responses revealed that hand carriage (146 bt.min⁻¹ , 25.09 mIO₂. kg-l.min⁻¹) was generally found to be more physiologically stressful than backpack carriage (130 bt.min⁻¹, 22.15 mIO₂.kg⁻¹ .min⁻¹) independent of load mass and gradient. Physiological responses were higher (113 bt.min-1 to 174 bt.min⁻¹ ) in responses to increasing gradient as opposed to increasing load mass (104 bt.min-1 to 153 bt.min⁻¹ ) for both backpack and hand carriage. Categorisation using the guidelines of Sanders and McCormick (1993) allowed for classification of conditions, with respect to physiological responses, into 'moderate', 'heavy' and 'very heavy' stress. For almost all of the physiological responses the majority of conditions which were classified as 'moderate' were backpack carriage conditions and the conditions classified as 'very heavy' were mostly hand carriage conditions. In terms of postural responses hand carriage resulted in more strain and greater compression and shearing forces on the spine. In terms of the compression forces increasing gradient had a greater affect on backpack carriage (681 N to 935 N) compared to hand carriage (570N to 793N). In contrast, increasing load mass had a larger affect on hand carriage postures and compression forces (751 N to 935N) in comparison to backpack carriage (723N to 780N). Shearing forces were found to be worse in hand carriage conditions overall. Although participants generally underrated perceived exertion in relation to cardiorespiratory responses, these perceptions revealed that backpack carriage, with a mean 'central' RPE of 12 compared to 11 for hand carriage, was somewhat preferred to hand carriage and that increasing gradient was perceived to be marginally more straining than increasing load mass.
- Full Text:
- Date Issued: 2007
The effect of load carriage on selected metabolic and perceptual responses of military personnel
- Authors: Ramabhai, Leena I
- Date: 2000
- Subjects: Marching -- Physiological aspects , Military art and science , Marching -- Psychological aspects , Lifting and carrying
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5111 , http://hdl.handle.net/10962/d1005189
- Description: Taking a multi-disciplinary, integrated approach, the present study sought to examine selected physiological and psycho-physical parameters related to load carriage involving a 12 km march under military conditions. Military constraints hampered, but did not entirely inhibit the secondary aim of the study which concerned the effectiveness of relativising loads in order to normalise responses for all soldiers, irrespective of morphological diversity. Forty three subjects were measured in six groups using a test-retest experimental protocol. They were involved in a rest-broken 12 km march at 4 km.h⁻¹ under 40.5 kg absolute total load and under a relative load of 37% of body mass. Heart rates, ratings of perceived exertion (RPE) as well as area and intensity of discomfort were monitored for all subjects. Ten subjects were measured more extensively with regard to physiology using the Metamax, a portable ergospirometry system that provides all the data needed for a complete functional analysis of lung, heart, circulation and metabolic activity. Physiological responses (fc; fb; V̇T; V̇E; V̇O₂; EE; V̇CO₂; R; T°) indicated subjects were not severely physically taxed and that the loads imposed constituted a sub-maximal demand. Moreover, there appeared to be a limited cumulative effect over the 3.5 h. Data from the first and third hours were similar, while the significantly higher responses in the second hour reflected the challenge of the undulating terrain encountered during this section of the march. All responses during the Relative load conditions mirrored those of the Absolute load condition but, because the demands were less, the trends occurred at a reduced level. Furthermore, the reduction in inter-individual variability indicates that relativised load carriage tends to stress the soldiers in a more uniform manner. All "local" RPE responses were higher than "central" ratings, suggesting soldiers were in good cardiovascular condition and experienced marginally more strain in the lower limbs. There was increased perceived strain corresponding to the increase in gradient, with little cumulative effect over the three hours. The shoulders and feet were the two regions in which most discomfort was experienced; the shoulders being the worst area in the first hour and the feet being rated the worst after the third hour of marching. This study clearly demonstrates the probability of a significant improvement in mean combat-readiness following loaded marching by showing that, if loads are set at levels commensurate with individual capabilities to carry them without undue strain, unnecessary physical demands experienced by smaller, more gracile soldiers are reduced.
- Full Text:
- Date Issued: 2000
- Authors: Ramabhai, Leena I
- Date: 2000
- Subjects: Marching -- Physiological aspects , Military art and science , Marching -- Psychological aspects , Lifting and carrying
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5111 , http://hdl.handle.net/10962/d1005189
- Description: Taking a multi-disciplinary, integrated approach, the present study sought to examine selected physiological and psycho-physical parameters related to load carriage involving a 12 km march under military conditions. Military constraints hampered, but did not entirely inhibit the secondary aim of the study which concerned the effectiveness of relativising loads in order to normalise responses for all soldiers, irrespective of morphological diversity. Forty three subjects were measured in six groups using a test-retest experimental protocol. They were involved in a rest-broken 12 km march at 4 km.h⁻¹ under 40.5 kg absolute total load and under a relative load of 37% of body mass. Heart rates, ratings of perceived exertion (RPE) as well as area and intensity of discomfort were monitored for all subjects. Ten subjects were measured more extensively with regard to physiology using the Metamax, a portable ergospirometry system that provides all the data needed for a complete functional analysis of lung, heart, circulation and metabolic activity. Physiological responses (fc; fb; V̇T; V̇E; V̇O₂; EE; V̇CO₂; R; T°) indicated subjects were not severely physically taxed and that the loads imposed constituted a sub-maximal demand. Moreover, there appeared to be a limited cumulative effect over the 3.5 h. Data from the first and third hours were similar, while the significantly higher responses in the second hour reflected the challenge of the undulating terrain encountered during this section of the march. All responses during the Relative load conditions mirrored those of the Absolute load condition but, because the demands were less, the trends occurred at a reduced level. Furthermore, the reduction in inter-individual variability indicates that relativised load carriage tends to stress the soldiers in a more uniform manner. All "local" RPE responses were higher than "central" ratings, suggesting soldiers were in good cardiovascular condition and experienced marginally more strain in the lower limbs. There was increased perceived strain corresponding to the increase in gradient, with little cumulative effect over the three hours. The shoulders and feet were the two regions in which most discomfort was experienced; the shoulders being the worst area in the first hour and the feet being rated the worst after the third hour of marching. This study clearly demonstrates the probability of a significant improvement in mean combat-readiness following loaded marching by showing that, if loads are set at levels commensurate with individual capabilities to carry them without undue strain, unnecessary physical demands experienced by smaller, more gracile soldiers are reduced.
- Full Text:
- Date Issued: 2000
Three dimensional kinetic analysis of asymmetrical lifting
- Authors: Li, Jian-Chuan
- Date: 1996
- Subjects: Lifting and carrying , Human engineering , Materials handling , Manual work
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5174 , http://hdl.handle.net/10962/d1018240
- Description: Manual lifting is dynamic in nature and involves asymmetrical loading of the human body. This study investigated kinematic and kinetic characteristics of asymmetrical lifting in three dimensions, and then constructed a 3-D biomechanical force model of the lower back which is capable of quantifying torsional stress on the human spine. Eleven healthy adult male manual workers were recruited as subjects and lifted a 1 Okg load placed at the sagittal plane (0°) and at 30°, 60° and 90° lateral planes to the right, from 150mm and 500mm initial lift heights, respectively, to an 800mm high bench in the sagittal plane. Subjects' spinal motions and the trajectorial movements of the load in three-dimensional space were monitored simultaneously by a Lumbar Motion Monitor and a V-scope Motion Analyzer. Generally, the spinal motion factors increased as a function of increasing task asymmetry and differed (p < 0.05) between the lower (150mm) and higher (500mm) levels in the sagittal plane. In all asymmetrical conditions the motion factors showed a dramatic increase at the 500mm level compared to the increase at the 150mm level. The rates of increase in the horizontal and frontal planes were greater than those in the sagittal plane. Task asymmetry had a significant effect on the spinal kinematic parameters in the frontal plane at the two lift heights, and only at the high level (500mm) in the horizontal plane, with exception of average acceleration . Initial lift height exerted a significant effect on peak velocity and acceleration in both frontal and horizontal planes and on range of motion in the horizontal plane. Kinetic characteristics of the object being lifted in three-dimensions increased with an increase in task asymmetry. The increase was more dramatic in the lateral direction in the horizontal plane. However, motion factors in the vertical direction dominated the full range of the lift, irrespective of task asymmetry and lift height. The kinetic measures differed (p < 0.05) between the lower ( 1 50mm) and the higher (500mm) levels in the vertical direction except for average force. Task asymmetry had a significant effect on dynamic measures in the anterior-posterior direction. Both task asymmetry and lift height had a significant effect on dynamic motion factors in the lateral direction. From insights gained in the empirical study a three-dimensional biomechanical force model of the lower back was constructed based on a mechanism of muscle force re-orientation in the lumbar region. Acknowledging that the lower back is designed to be able to rotate around its longitudinal axis, the proposed model accounts for compression and shear forces and a torsional moment. The model has similar predictability to Schultz and Andersson's (1981) model when the human trunk exerts only a flexion-extension moment in the sagittal plane, but additionally predicts dramatic increases in shear forces, oblique muscle forces and torsional moment under asymmetrical lifting conditions which the Schultz-Andersson model does not. The increase rates in these forces and moment are not linearly related over task asymmetric angle.
- Full Text:
- Date Issued: 1996
- Authors: Li, Jian-Chuan
- Date: 1996
- Subjects: Lifting and carrying , Human engineering , Materials handling , Manual work
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5174 , http://hdl.handle.net/10962/d1018240
- Description: Manual lifting is dynamic in nature and involves asymmetrical loading of the human body. This study investigated kinematic and kinetic characteristics of asymmetrical lifting in three dimensions, and then constructed a 3-D biomechanical force model of the lower back which is capable of quantifying torsional stress on the human spine. Eleven healthy adult male manual workers were recruited as subjects and lifted a 1 Okg load placed at the sagittal plane (0°) and at 30°, 60° and 90° lateral planes to the right, from 150mm and 500mm initial lift heights, respectively, to an 800mm high bench in the sagittal plane. Subjects' spinal motions and the trajectorial movements of the load in three-dimensional space were monitored simultaneously by a Lumbar Motion Monitor and a V-scope Motion Analyzer. Generally, the spinal motion factors increased as a function of increasing task asymmetry and differed (p < 0.05) between the lower (150mm) and higher (500mm) levels in the sagittal plane. In all asymmetrical conditions the motion factors showed a dramatic increase at the 500mm level compared to the increase at the 150mm level. The rates of increase in the horizontal and frontal planes were greater than those in the sagittal plane. Task asymmetry had a significant effect on the spinal kinematic parameters in the frontal plane at the two lift heights, and only at the high level (500mm) in the horizontal plane, with exception of average acceleration . Initial lift height exerted a significant effect on peak velocity and acceleration in both frontal and horizontal planes and on range of motion in the horizontal plane. Kinetic characteristics of the object being lifted in three-dimensions increased with an increase in task asymmetry. The increase was more dramatic in the lateral direction in the horizontal plane. However, motion factors in the vertical direction dominated the full range of the lift, irrespective of task asymmetry and lift height. The kinetic measures differed (p < 0.05) between the lower ( 1 50mm) and the higher (500mm) levels in the vertical direction except for average force. Task asymmetry had a significant effect on dynamic measures in the anterior-posterior direction. Both task asymmetry and lift height had a significant effect on dynamic motion factors in the lateral direction. From insights gained in the empirical study a three-dimensional biomechanical force model of the lower back was constructed based on a mechanism of muscle force re-orientation in the lumbar region. Acknowledging that the lower back is designed to be able to rotate around its longitudinal axis, the proposed model accounts for compression and shear forces and a torsional moment. The model has similar predictability to Schultz and Andersson's (1981) model when the human trunk exerts only a flexion-extension moment in the sagittal plane, but additionally predicts dramatic increases in shear forces, oblique muscle forces and torsional moment under asymmetrical lifting conditions which the Schultz-Andersson model does not. The increase rates in these forces and moment are not linearly related over task asymmetric angle.
- Full Text:
- Date Issued: 1996
- «
- ‹
- 1
- ›
- »