KalCal: a novel calibration framework for radio interferometry using the Kalman Filter and Smoother
- Authors: Welman, Brian Allister
- Date: 2024-10-11
- Subjects: Radio interferometers , Calibration , Kalman filtering , Bayesian inference , Signal processing , Radio astronomy , MeerKAT
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/467127 , vital:76818
- Description: Calibration in radio interferometry is essential for correcting measurement errors. Traditional methods employ maximum likelihood techniques and non-linear least squares solvers but face challenges due to the data volumes and increased noise sensitivity of contemporary instruments such as MeerKAT. A common approach for mitigating these issues is using “solution intervals”, which helps manage the data volume and reduces overfitting. However, inappropriate interval sizes can degrade calibration quality, and determining optimal sizes is challenging, often relying on brute-force methods. This study introduces Kalman Filtering and Smoothing in Calibration (KalCal), a new framework for calibration that combines the Kalman Filter, Kalman Smoother, and the energy function: the negative logarithm of the Bayesian evidence. KalCal offers Bayesian-optimal solutions as probability densities and models calibration effects with lower computational requirements than iterative approaches. Unlike traditional methods, which require all the data for a particular solution to be in memory simultaneously, KalCal’s recursive computations only need a single pass through the data with appropriate prior information. The energy function provides the means for KalCal to determine this prior information. Theoretical contributions include additions to complex optimisation literature and the “Kalman-Woodbury Identity” that reformulates the traditional Kalman Filter. A Python implementation of the KalCal framework was benchmarked against solution intervals as implemented in the QuartiCal package. Simulations show KalCal matching solution intervals in high Signal-to-Noise Ratio (SNR) scenarios and surpassing them in low SNR conditions. Moreover, the energy function produced minima that coincide with KalCal’s Mean Square Error (MSE) on the true gain signal. This result is significant as the MSE is unavailable in real applications. Further research is needed to assess the computational feasibility and intricacies of KalCal. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Welman, Brian Allister
- Date: 2024-10-11
- Subjects: Radio interferometers , Calibration , Kalman filtering , Bayesian inference , Signal processing , Radio astronomy , MeerKAT
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/467127 , vital:76818
- Description: Calibration in radio interferometry is essential for correcting measurement errors. Traditional methods employ maximum likelihood techniques and non-linear least squares solvers but face challenges due to the data volumes and increased noise sensitivity of contemporary instruments such as MeerKAT. A common approach for mitigating these issues is using “solution intervals”, which helps manage the data volume and reduces overfitting. However, inappropriate interval sizes can degrade calibration quality, and determining optimal sizes is challenging, often relying on brute-force methods. This study introduces Kalman Filtering and Smoothing in Calibration (KalCal), a new framework for calibration that combines the Kalman Filter, Kalman Smoother, and the energy function: the negative logarithm of the Bayesian evidence. KalCal offers Bayesian-optimal solutions as probability densities and models calibration effects with lower computational requirements than iterative approaches. Unlike traditional methods, which require all the data for a particular solution to be in memory simultaneously, KalCal’s recursive computations only need a single pass through the data with appropriate prior information. The energy function provides the means for KalCal to determine this prior information. Theoretical contributions include additions to complex optimisation literature and the “Kalman-Woodbury Identity” that reformulates the traditional Kalman Filter. A Python implementation of the KalCal framework was benchmarked against solution intervals as implemented in the QuartiCal package. Simulations show KalCal matching solution intervals in high Signal-to-Noise Ratio (SNR) scenarios and surpassing them in low SNR conditions. Moreover, the energy function produced minima that coincide with KalCal’s Mean Square Error (MSE) on the true gain signal. This result is significant as the MSE is unavailable in real applications. Further research is needed to assess the computational feasibility and intricacies of KalCal. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
Meerkat polarimetric observations of Pictor A
- Authors: Andati, Lexy Acherwa Livoyi
- Date: 2024-10-11
- Subjects: Polarimetry , MeerKAT , Radio astronomy , Radio galaxies , Cosmic magnetic fields , Pictor A
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466896 , vital:76796 , DOI https://doi.org/10.21504/10962/466896
- Description: Pictor A is one of the brightest and closest radio galaxies in the Southern Hemisphere, offering a unique opportunity for in-depth studies of the astrophysics of radio galaxies and their interactions with their environments. Many multi-wavelength studies of this source have been done. However, the most comprehensive radio frequency study of Pictor A’s morphological components was conducted by Perley et al. (1997) using the Very Large Array (VLA) located in the Northern Hemisphere. To date, that work remains the most detailed study of Pictor A. In this thesis, we conducted a spectropolarimetric study of Pictor A using new L-band data obtained in 2019 from the high-sensitivity MeerKAT telescope, which provides the deepest and most sensitive data of this source at a continuous and finely sampled frequency coverage in the L-band. Thus, due to Pictor A’s proximity, high luminosity, and the MeerKAT’s high sensitivity, the data delivers a unique dataset for our study of the magnetic field structure of Pictor A and allows for a detailed study of the source’s morphological structures. We presented the steps taken during our calibration and data reduction, leading to polarimetryready images. During the first phase of calibration, excision of data corrupted by instrumental effects and radio frequency interference (RFI) resulted in only 50% useable data. Pictor A’s exceptionally bright western hotspot introduced significant artefacts in our images, mitigated in the second calibration phase through direction-dependent calibration. The calibrated data resulted in a multi-frequency synthesis (MFS) Stokes I image of Pictor A at 7.5′′ in resolution with an offsource RMS noise of ∼22 𝜇Jy/beam. The off-source noise in the Stokes Q and U sub-band images ranged between 95 – 278 𝜇Jy/beam and 41 – 233 𝜇Jy/beam, respectively. Additionally, we briefly highlighted the effects of RFI in the L-band on polarimetry, particularly the considerable loss of 𝜆2 coverage of ∼50%. All the calibration recipes used for this work were made available in this thesis. Using Pictor A’s data as a testbed, we introduced a Python-based tool, Smops, developed during the calibration stages of our work. Smops was designed for an intermediate post-processing step. It interpolates input sub-band model FITS images (such as those produced by WSClean) into finely channelized sub-band model FITS images, thereby generating model images at a higher frequency resolution. Smops reduces the need to generate model images with numerous sub-bands, which is computationally intensive and time-consuming. A higher resolution in frequency of the models facilitates more efficient model subtraction during self-calibration. We then presented the total intensity features of Pictor A, which the calibrated data reveals. We confirmed the presence of Pictor A’s radio jet extending from its core to the western hotspot. Notably, this feature, faint and barely visible in previous radio images, is now distinctly observed. The counterjet remains undetectable. Furthermore, we demonstrated the coexistence of radio emission, which is expected to align with previously observed X-ray diffuse emission. This observation confirmed the inverse Compton origin of Pictor A’s lobe emission. Employing the RM-synthesis technique for the spectropolarimetric study of Pictor A, we identified a relatively consistent rotation measure (RM) across its lobes, with an average RM of 48.06 ± 10.19 rad m−2 for the entire source. However, the eastern lobe displayed a wider RM dispersion than the western lobe. Moreover, our study affirmed the depolarisation asymmetry previously observed between the western and eastern lobes of Pictor A, where the eastern lobe exhibited significantly more depolarisation than its western counterpart. Most lines-of-sight across Pictor A displayed single-peaked Faraday spectra, indicating a single Faraday rotating screen. However, we also noted that several lines-of-sight (∼23%) showed more than one Faraday peak. An investigation into the ii possible causes of the multiple observed peaks using QU-fitting suggested that there is a possibility of a Faraday thick structure or multiple Faraday components along these paths. Furthermore, we estimated a Galactic RM contribution towards Pictor A of 23.57 ± 10.87 rad m−2. We concluded that while our Galaxy may contribute to the mean RM for this source, it cannot explain smallscale fluctuations, which suggests that some fraction of the observed rotation measures could result from some inter-galactic medium, X-ray gas near the shock boundary region (the sheath), or other unknown intervening material. We introduced Scrappy, a Python-based tool tailored for processing lines-of-sight data. Scrappy yields RM-synthesis diagnostic data products such as the data associated with each line-of-sight, and their corresponding plots in 𝜙-space (e.g. cleaned and dirty Faraday spectra and RMTF), and 𝜆2-space (e.g. the fractional polarisation, and Stokes Q and U ). Scrappy further avails a Bash-based pipeline, showrunner.sh, that processes input sub-band Stokes images, automatically selects usable sub-bands, stacks images into Stokes cubes, generates lines-of-sight, processes their corresponding data, and produces diagnostic plots. Additionally, it creates per-pixel maps of fractional polarisation, RM, polarisation angle, peak FDF, and linear polarised intensity. The pipeline ensures reproducibility. To visualise the diagnostic plots from Scrappy, we developed PolarVis, a simple web-based tool that enables the visualisation of diagnostic plots associated with each available line-of-sight, thus facilitating the quick exploration of interesting lines-of-sight in regions across this source. This tool facilitates the visualisation of polarisation behaviour for specific lines-of-sight, enabling quick identification of interesting regions of the source. Furthermore, its interactivity promotes the exploration of line-of-sight data. Availing data to the public with this tool permits validation or comparison of results from varying techniques, hence fostering a sense of transparency. As a result, the 2389 lines-of-sight of Pictor A are presented using PolarVis and are available at https://pica.ratt.center. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Andati, Lexy Acherwa Livoyi
- Date: 2024-10-11
- Subjects: Polarimetry , MeerKAT , Radio astronomy , Radio galaxies , Cosmic magnetic fields , Pictor A
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466896 , vital:76796 , DOI https://doi.org/10.21504/10962/466896
- Description: Pictor A is one of the brightest and closest radio galaxies in the Southern Hemisphere, offering a unique opportunity for in-depth studies of the astrophysics of radio galaxies and their interactions with their environments. Many multi-wavelength studies of this source have been done. However, the most comprehensive radio frequency study of Pictor A’s morphological components was conducted by Perley et al. (1997) using the Very Large Array (VLA) located in the Northern Hemisphere. To date, that work remains the most detailed study of Pictor A. In this thesis, we conducted a spectropolarimetric study of Pictor A using new L-band data obtained in 2019 from the high-sensitivity MeerKAT telescope, which provides the deepest and most sensitive data of this source at a continuous and finely sampled frequency coverage in the L-band. Thus, due to Pictor A’s proximity, high luminosity, and the MeerKAT’s high sensitivity, the data delivers a unique dataset for our study of the magnetic field structure of Pictor A and allows for a detailed study of the source’s morphological structures. We presented the steps taken during our calibration and data reduction, leading to polarimetryready images. During the first phase of calibration, excision of data corrupted by instrumental effects and radio frequency interference (RFI) resulted in only 50% useable data. Pictor A’s exceptionally bright western hotspot introduced significant artefacts in our images, mitigated in the second calibration phase through direction-dependent calibration. The calibrated data resulted in a multi-frequency synthesis (MFS) Stokes I image of Pictor A at 7.5′′ in resolution with an offsource RMS noise of ∼22 𝜇Jy/beam. The off-source noise in the Stokes Q and U sub-band images ranged between 95 – 278 𝜇Jy/beam and 41 – 233 𝜇Jy/beam, respectively. Additionally, we briefly highlighted the effects of RFI in the L-band on polarimetry, particularly the considerable loss of 𝜆2 coverage of ∼50%. All the calibration recipes used for this work were made available in this thesis. Using Pictor A’s data as a testbed, we introduced a Python-based tool, Smops, developed during the calibration stages of our work. Smops was designed for an intermediate post-processing step. It interpolates input sub-band model FITS images (such as those produced by WSClean) into finely channelized sub-band model FITS images, thereby generating model images at a higher frequency resolution. Smops reduces the need to generate model images with numerous sub-bands, which is computationally intensive and time-consuming. A higher resolution in frequency of the models facilitates more efficient model subtraction during self-calibration. We then presented the total intensity features of Pictor A, which the calibrated data reveals. We confirmed the presence of Pictor A’s radio jet extending from its core to the western hotspot. Notably, this feature, faint and barely visible in previous radio images, is now distinctly observed. The counterjet remains undetectable. Furthermore, we demonstrated the coexistence of radio emission, which is expected to align with previously observed X-ray diffuse emission. This observation confirmed the inverse Compton origin of Pictor A’s lobe emission. Employing the RM-synthesis technique for the spectropolarimetric study of Pictor A, we identified a relatively consistent rotation measure (RM) across its lobes, with an average RM of 48.06 ± 10.19 rad m−2 for the entire source. However, the eastern lobe displayed a wider RM dispersion than the western lobe. Moreover, our study affirmed the depolarisation asymmetry previously observed between the western and eastern lobes of Pictor A, where the eastern lobe exhibited significantly more depolarisation than its western counterpart. Most lines-of-sight across Pictor A displayed single-peaked Faraday spectra, indicating a single Faraday rotating screen. However, we also noted that several lines-of-sight (∼23%) showed more than one Faraday peak. An investigation into the ii possible causes of the multiple observed peaks using QU-fitting suggested that there is a possibility of a Faraday thick structure or multiple Faraday components along these paths. Furthermore, we estimated a Galactic RM contribution towards Pictor A of 23.57 ± 10.87 rad m−2. We concluded that while our Galaxy may contribute to the mean RM for this source, it cannot explain smallscale fluctuations, which suggests that some fraction of the observed rotation measures could result from some inter-galactic medium, X-ray gas near the shock boundary region (the sheath), or other unknown intervening material. We introduced Scrappy, a Python-based tool tailored for processing lines-of-sight data. Scrappy yields RM-synthesis diagnostic data products such as the data associated with each line-of-sight, and their corresponding plots in 𝜙-space (e.g. cleaned and dirty Faraday spectra and RMTF), and 𝜆2-space (e.g. the fractional polarisation, and Stokes Q and U ). Scrappy further avails a Bash-based pipeline, showrunner.sh, that processes input sub-band Stokes images, automatically selects usable sub-bands, stacks images into Stokes cubes, generates lines-of-sight, processes their corresponding data, and produces diagnostic plots. Additionally, it creates per-pixel maps of fractional polarisation, RM, polarisation angle, peak FDF, and linear polarised intensity. The pipeline ensures reproducibility. To visualise the diagnostic plots from Scrappy, we developed PolarVis, a simple web-based tool that enables the visualisation of diagnostic plots associated with each available line-of-sight, thus facilitating the quick exploration of interesting lines-of-sight in regions across this source. This tool facilitates the visualisation of polarisation behaviour for specific lines-of-sight, enabling quick identification of interesting regions of the source. Furthermore, its interactivity promotes the exploration of line-of-sight data. Availing data to the public with this tool permits validation or comparison of results from varying techniques, hence fostering a sense of transparency. As a result, the 2389 lines-of-sight of Pictor A are presented using PolarVis and are available at https://pica.ratt.center. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
MeerKAT: a journey from commissioning to science
- Authors: Hugo, Benjamin Vorster
- Date: 2024-10-11
- Subjects: MeerKAT , Interferometry , Ionosphere , Pulsars
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466871 , vital:76794 , DOI https://doi.org/10.21504/10962/466871
- Description: This dissertation presents a collection of work completed for the South African Radio Astronomy Observatory in characterizing calibrator fields PKS B1934-638, PKS B0407-65 and 3C286, the development of a facet-based multi-direction peeling scheme for the CUBICAL calibration framework and incorporation into an end-to-end containerized data reduction framework, a study of a transitional millisecond pulsar candidate, and characterization of baseline dependent archiving tooling for MeerKAT. Our long term studies of PKS B1934-638, PKS B0407-65 indicate that these bandpass and flux calibrators are stable over multiple years. We also find that, especially at low frequencies in the UHF band, the population of sources surrounding these stellar Gigahertz Peaked Sources (GPS) can contribute to errors two to three orders of magnitude above desired bandpass calibration solution stability, if left unmodeled. We derive new new full sky models of these fields, currently in use by the MeerKAT Science Data Processor. We characterize the MeerKAT feed alignment using the refraction-driven linearly polarized thermal light from the Moon in order to derive a new model for the linear polarization of the stable quasar 3C286 down to 544 MHz. Part of this work includes characterization of ionospheric corrections using the International Global Navigation Satelite System Service and direct measurement of total electron content above the MeerKAT site using interchange data from the South African TrigNET service. We find that current commonly-employed techniques achieve corrections to ionospheric Faraday rotation no better than 1 rad m2. This is the main limitation on the accuracy of polarimetric observation using the MeerKAT array. We find that 3C286 intrinsically depolarizes at frequencies below 1 GHz, with an associated non-linear increase in the intrinsic source rotation measure. We present an improvement to workflows using the CUBICAL calibration framework, developed at Rhodes University. Modern radio interferometers presents a significant challenge to calibrate, often necessitating memory and computeintensive direction-dependent calibration towards many directions in order to improve the fidelity of radio images in order to meet scientific goals. We developed a framework to simplify the model prediction aspect of these direction-dependent calibration workflows using targeted faceting. Using our scheme users use models derived from the DDFACET imaging package and only need to provide lattices to mark regions of sky to which direction-dependent calibration solutions need to be solved for. This simplifies a laborious multi-step process in traditional calibration packages that need to be executed per direction. The approach is compared to an image-space corrective regime and incorporated into the VERMEERKAT end-to-end calibration framework for MeerKAT data. The improved direction-dependent calibration techniques were then applied in an analysis of the transitional millisecond pulsar candidate CXOU J110926.4-650224. The link between accreting binary systems (where emission is dominated by the synchrotron emission of relativistic jets from thermo-nuclear reaction onto the Neutron Star surface by the infalling matter) and binary radio pulsars is currently elusive. This is due to the lack of a large population of such transitional systems — only three confirmed transitional systems are known at the time of writing. It is thought that infalling matter effectively quenches the radio pulsar mechanism. Our candidate was found to be variable in the optical and the X-ray, with transitions between low, high and flaring states lasting anywhere from a tens of seconds to tens of minutes, seen in archival observations spanning nearly three decades. For the first time we detect low level synchrotron emission (_ 50 mJy beam1) coincident with this system using MeerKAT, including a flare within minutes of a flare detected in X-ray using the XMM-Newton observatory. Our analysis indicate that there is no clear anti-correlated behaviour between radio and X-ray state transitions in this system, unlike other candidate systems—indicating that such transitional systems may not exhibit homogenous behaviour. This suggests that the processes driving the X-ray mode-switching in this system are not directly linked to the processes responsible for emitting radio synchrotron radiation. Finally, we consider the problem of MeerKAT data archiving. We present a qualification analysis, using MeerKAT data, of the Rhodes University baseline-dependent archiving package XOVA, which can be used to compress and archive MeerKAT data in interchange standard-compliant format. The data rates from interferometric array radio telescopes, such as MeerKAT, grow as the square of the number of antennas in such an array. For the sake of reproducibility and future reanalysis it is important to archive calibrated visibility products. The degree to which calibrated visibility products can be compressed, by averaging, depends on the amount of smearing that can be tolerated at a fixed distance from the center of the images synthesized from these visibility products. This is, traditionally, set by the longest spacing in the interferometric array, with all other spacings averaged to the same integration and channelization as the longest spacing. We find that, using baseline-dependent averaging techniques – where averaging intervals are set per interferometric spacing – we can achieve space savings an order of magnitude better than traditional averaging approaches, with no appreciable loss of image fidelity when compared to traditional averaging approaches. , Thesis (PhD) -- Faculty of Science, Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Hugo, Benjamin Vorster
- Date: 2024-10-11
- Subjects: MeerKAT , Interferometry , Ionosphere , Pulsars
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466871 , vital:76794 , DOI https://doi.org/10.21504/10962/466871
- Description: This dissertation presents a collection of work completed for the South African Radio Astronomy Observatory in characterizing calibrator fields PKS B1934-638, PKS B0407-65 and 3C286, the development of a facet-based multi-direction peeling scheme for the CUBICAL calibration framework and incorporation into an end-to-end containerized data reduction framework, a study of a transitional millisecond pulsar candidate, and characterization of baseline dependent archiving tooling for MeerKAT. Our long term studies of PKS B1934-638, PKS B0407-65 indicate that these bandpass and flux calibrators are stable over multiple years. We also find that, especially at low frequencies in the UHF band, the population of sources surrounding these stellar Gigahertz Peaked Sources (GPS) can contribute to errors two to three orders of magnitude above desired bandpass calibration solution stability, if left unmodeled. We derive new new full sky models of these fields, currently in use by the MeerKAT Science Data Processor. We characterize the MeerKAT feed alignment using the refraction-driven linearly polarized thermal light from the Moon in order to derive a new model for the linear polarization of the stable quasar 3C286 down to 544 MHz. Part of this work includes characterization of ionospheric corrections using the International Global Navigation Satelite System Service and direct measurement of total electron content above the MeerKAT site using interchange data from the South African TrigNET service. We find that current commonly-employed techniques achieve corrections to ionospheric Faraday rotation no better than 1 rad m2. This is the main limitation on the accuracy of polarimetric observation using the MeerKAT array. We find that 3C286 intrinsically depolarizes at frequencies below 1 GHz, with an associated non-linear increase in the intrinsic source rotation measure. We present an improvement to workflows using the CUBICAL calibration framework, developed at Rhodes University. Modern radio interferometers presents a significant challenge to calibrate, often necessitating memory and computeintensive direction-dependent calibration towards many directions in order to improve the fidelity of radio images in order to meet scientific goals. We developed a framework to simplify the model prediction aspect of these direction-dependent calibration workflows using targeted faceting. Using our scheme users use models derived from the DDFACET imaging package and only need to provide lattices to mark regions of sky to which direction-dependent calibration solutions need to be solved for. This simplifies a laborious multi-step process in traditional calibration packages that need to be executed per direction. The approach is compared to an image-space corrective regime and incorporated into the VERMEERKAT end-to-end calibration framework for MeerKAT data. The improved direction-dependent calibration techniques were then applied in an analysis of the transitional millisecond pulsar candidate CXOU J110926.4-650224. The link between accreting binary systems (where emission is dominated by the synchrotron emission of relativistic jets from thermo-nuclear reaction onto the Neutron Star surface by the infalling matter) and binary radio pulsars is currently elusive. This is due to the lack of a large population of such transitional systems — only three confirmed transitional systems are known at the time of writing. It is thought that infalling matter effectively quenches the radio pulsar mechanism. Our candidate was found to be variable in the optical and the X-ray, with transitions between low, high and flaring states lasting anywhere from a tens of seconds to tens of minutes, seen in archival observations spanning nearly three decades. For the first time we detect low level synchrotron emission (_ 50 mJy beam1) coincident with this system using MeerKAT, including a flare within minutes of a flare detected in X-ray using the XMM-Newton observatory. Our analysis indicate that there is no clear anti-correlated behaviour between radio and X-ray state transitions in this system, unlike other candidate systems—indicating that such transitional systems may not exhibit homogenous behaviour. This suggests that the processes driving the X-ray mode-switching in this system are not directly linked to the processes responsible for emitting radio synchrotron radiation. Finally, we consider the problem of MeerKAT data archiving. We present a qualification analysis, using MeerKAT data, of the Rhodes University baseline-dependent archiving package XOVA, which can be used to compress and archive MeerKAT data in interchange standard-compliant format. The data rates from interferometric array radio telescopes, such as MeerKAT, grow as the square of the number of antennas in such an array. For the sake of reproducibility and future reanalysis it is important to archive calibrated visibility products. The degree to which calibrated visibility products can be compressed, by averaging, depends on the amount of smearing that can be tolerated at a fixed distance from the center of the images synthesized from these visibility products. This is, traditionally, set by the longest spacing in the interferometric array, with all other spacings averaged to the same integration and channelization as the longest spacing. We find that, using baseline-dependent averaging techniques – where averaging intervals are set per interferometric spacing – we can achieve space savings an order of magnitude better than traditional averaging approaches, with no appreciable loss of image fidelity when compared to traditional averaging approaches. , Thesis (PhD) -- Faculty of Science, Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
Mining MeerKAT data for minute to hour timescale transients and variable sources
- Authors: Gcilitshana, Sihle
- Date: 2024-10-11
- Subjects: MeerKAT , Astronomy Data processing , Radio astronomy , Pipelining (Electronics) , Active galactic nuclei
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464886 , vital:76554
- Description: In radio astronomy, minute-to-hour timescale transients and variable sources present an understudied population. We now have an unprecedented view of the transient radio sky due to the advent of new telescopes (such as the MeerKAT) with high instantaneous sensitivity, excellent snapshot imaging capabilities, and a large field of view. We can now probe into this population. This thesis presents the search for minute-to-hour timescale transient and variable sources in two of MeerKAT archival observations: the COSMOS and MACS J2140.2−2339 fields. The fields were observed for eight and five hours at the UHF band, respectively. We employed the PARROT transient and variable search pipeline currently being developed by the RATT group at Rhodes University. The pipeline’s input is a cross-calibrated measurement set, and its outputs are light curves extracted from all the sources in the restored image of the field. Using the light curves from the pipeline, we detected two variable sources in the COSMOS field, scintillating Active Galactic Nuclei (AGNs), which are most likely caused by the turbulent plasma in the interstellar medium. Due to persistent ionospheric diffraction, no variable sources were detected in the MACS J2140.2−2339 field, and no transients were detected in either field. The thesis also highlights areas where improvements to the PARROT pipeline can be implemented. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Gcilitshana, Sihle
- Date: 2024-10-11
- Subjects: MeerKAT , Astronomy Data processing , Radio astronomy , Pipelining (Electronics) , Active galactic nuclei
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464886 , vital:76554
- Description: In radio astronomy, minute-to-hour timescale transients and variable sources present an understudied population. We now have an unprecedented view of the transient radio sky due to the advent of new telescopes (such as the MeerKAT) with high instantaneous sensitivity, excellent snapshot imaging capabilities, and a large field of view. We can now probe into this population. This thesis presents the search for minute-to-hour timescale transient and variable sources in two of MeerKAT archival observations: the COSMOS and MACS J2140.2−2339 fields. The fields were observed for eight and five hours at the UHF band, respectively. We employed the PARROT transient and variable search pipeline currently being developed by the RATT group at Rhodes University. The pipeline’s input is a cross-calibrated measurement set, and its outputs are light curves extracted from all the sources in the restored image of the field. Using the light curves from the pipeline, we detected two variable sources in the COSMOS field, scintillating Active Galactic Nuclei (AGNs), which are most likely caused by the turbulent plasma in the interstellar medium. Due to persistent ionospheric diffraction, no variable sources were detected in the MACS J2140.2−2339 field, and no transients were detected in either field. The thesis also highlights areas where improvements to the PARROT pipeline can be implemented. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
HI View of the Norma Galaxy Cluster with MeerKAT
- Authors: Mophahlane, Koketso Vincent
- Date: 2023-10-13
- Subjects: Norma Cluster , MeerKAT , Galaxies Motion in line of sight , Galaxies Clusters , Star formation
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/432530 , vital:72878
- Description: Studies reveal that galaxies assemble into clusters as gas-rich, active star-forming disks and eventually settle in the virialized core as quenched early-type galaxies with depleted gas. To examine environmental effects responsible for the quenched population in the cluster core, we exploit the higher sensitivity of the MeerKAT telescope to probe Hi properties of galaxies in the Norma cluster. The Norma cluster is an ideal laboratory for this study since it is a rich and massive cluster of nearby galaxies. The Hi data cube used covers a velocity range of 483 − 11, 113 km/s, with a noise rms sensitivity of 0.09 mJy/beam and an angular resolution of ∼ 14.65′′ × 9.28′′. A total of 25 reliable Hi sources were detected over the entire velocity range. The Hi detections reveal two major galaxy overdensities located at vrad ∼ 2096 − 7646 km/s and vrad ∼ 10, 000 km/s. The first is associated with the Norma cluster gravitational potential and indicates a substructure in its velocity distribution; the other is a population of background galaxies. In this work, the Norma cluster has 13 cluster members detected in Hi and 130 galaxies from optical surveys. The spatial distribution of cluster members covers a field that is 2/3 × RA, where RA = 2.02 Mpc at cz = 4871 km/s. From the spatial distribution, optical galaxies are densely populated in the central regions, while most galaxies in Hi were detected on the outskirts. From the phase-space diagram, 6 galaxies detected in Hi are found in the virialised region, while the rest of the detections are infalling for the first time. Hi detections that are not yet virialised have asymmetrical morphologies, while virialised detections have truncated gas disks. Most cluster members that were found to have asymmetrical gas disks are also Hi deficient by 0.8 − 1.2 dex but show excess SFR efficiency for the amount of Hi detected. The results demonstrate that the initial phase of galaxy-ICM interactions might be responsible for morphological transformation and enhancement of star formation activity. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Mophahlane, Koketso Vincent
- Date: 2023-10-13
- Subjects: Norma Cluster , MeerKAT , Galaxies Motion in line of sight , Galaxies Clusters , Star formation
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/432530 , vital:72878
- Description: Studies reveal that galaxies assemble into clusters as gas-rich, active star-forming disks and eventually settle in the virialized core as quenched early-type galaxies with depleted gas. To examine environmental effects responsible for the quenched population in the cluster core, we exploit the higher sensitivity of the MeerKAT telescope to probe Hi properties of galaxies in the Norma cluster. The Norma cluster is an ideal laboratory for this study since it is a rich and massive cluster of nearby galaxies. The Hi data cube used covers a velocity range of 483 − 11, 113 km/s, with a noise rms sensitivity of 0.09 mJy/beam and an angular resolution of ∼ 14.65′′ × 9.28′′. A total of 25 reliable Hi sources were detected over the entire velocity range. The Hi detections reveal two major galaxy overdensities located at vrad ∼ 2096 − 7646 km/s and vrad ∼ 10, 000 km/s. The first is associated with the Norma cluster gravitational potential and indicates a substructure in its velocity distribution; the other is a population of background galaxies. In this work, the Norma cluster has 13 cluster members detected in Hi and 130 galaxies from optical surveys. The spatial distribution of cluster members covers a field that is 2/3 × RA, where RA = 2.02 Mpc at cz = 4871 km/s. From the spatial distribution, optical galaxies are densely populated in the central regions, while most galaxies in Hi were detected on the outskirts. From the phase-space diagram, 6 galaxies detected in Hi are found in the virialised region, while the rest of the detections are infalling for the first time. Hi detections that are not yet virialised have asymmetrical morphologies, while virialised detections have truncated gas disks. Most cluster members that were found to have asymmetrical gas disks are also Hi deficient by 0.8 − 1.2 dex but show excess SFR efficiency for the amount of Hi detected. The results demonstrate that the initial phase of galaxy-ICM interactions might be responsible for morphological transformation and enhancement of star formation activity. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2023
- Full Text:
- Date Issued: 2023-10-13
M3: Mining Mini-Halos with MeerKAT
- Authors: Trehaeven, Keegan Somerset
- Date: 2023-10-13
- Subjects: Physics , Astronomy , Galaxies Clusters , Extragalactic astronomy , Astrophysics , MeerKAT
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424754 , vital:72181
- Description: This work aims to showcase the MeerKAT telescope’s capabilities and related calibration and imaging software in studying the emission of radio mini-halos. These diffuse radio synchrotron sources surround a Brightest Cluster Galaxy (BCG) in relatively relaxed clusters out to a few 100 kpc in size. They are difficult to image because of their relatively low surface brightness and small angular size. Hence, they could not be studied in great detail by previous generations of radio telescopes and much about their nature, particularly the exact production mechanism, is not yet fully understood. Thus, for the first time, MeerKAT observed a sample of five galaxy clusters to investigate the central radio mini-halo in each. Studying these sources requires the deepest images generated from the data and the effective subtraction of any projected sources obscuring or contaminating the underlying diffuse emission. Therefore, I describe the data reduction used to create third-generation calibrated, primary beam corrected, point source subtracted Stokes I L-band continuum images of these clusters. For first- and second-generation calibration, I use the CARACal pipeline, which implements software optimised explicitly for MeerKAT data. For third-generation calibration, I use the faceted approach of killMS and DDFacet, and then I perform visibility-plane point source subtraction to disentangle the compact and diffuse emissions. I then measured the size, flux density, in-band spectral properties, and radio power of the central mini-halos. I present the first new mini-halo detection by MeerKAT (MACS J2140.2-2339, Trehaeven et al. accepted), the first spectral index maps of these mini-halos, which show very interesting distributions, and a ∼100 kpc II southern extension to the ACO 3444 mini-halo previously unseen in archival VLA data. Thereafter, I present a multi-wavelength case study for two complementary mini-halos from our sample and show via a radio-to-X-ray spatial correlation test that they might be caused by different particle (re)-acceleration mechanisms. Through these initial science results, I have shown that future observations of radio mini-halos with MeerKAT are an exciting prospect that can lead to a better understanding of the fundamental physics behind these sources. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Trehaeven, Keegan Somerset
- Date: 2023-10-13
- Subjects: Physics , Astronomy , Galaxies Clusters , Extragalactic astronomy , Astrophysics , MeerKAT
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424754 , vital:72181
- Description: This work aims to showcase the MeerKAT telescope’s capabilities and related calibration and imaging software in studying the emission of radio mini-halos. These diffuse radio synchrotron sources surround a Brightest Cluster Galaxy (BCG) in relatively relaxed clusters out to a few 100 kpc in size. They are difficult to image because of their relatively low surface brightness and small angular size. Hence, they could not be studied in great detail by previous generations of radio telescopes and much about their nature, particularly the exact production mechanism, is not yet fully understood. Thus, for the first time, MeerKAT observed a sample of five galaxy clusters to investigate the central radio mini-halo in each. Studying these sources requires the deepest images generated from the data and the effective subtraction of any projected sources obscuring or contaminating the underlying diffuse emission. Therefore, I describe the data reduction used to create third-generation calibrated, primary beam corrected, point source subtracted Stokes I L-band continuum images of these clusters. For first- and second-generation calibration, I use the CARACal pipeline, which implements software optimised explicitly for MeerKAT data. For third-generation calibration, I use the faceted approach of killMS and DDFacet, and then I perform visibility-plane point source subtraction to disentangle the compact and diffuse emissions. I then measured the size, flux density, in-band spectral properties, and radio power of the central mini-halos. I present the first new mini-halo detection by MeerKAT (MACS J2140.2-2339, Trehaeven et al. accepted), the first spectral index maps of these mini-halos, which show very interesting distributions, and a ∼100 kpc II southern extension to the ACO 3444 mini-halo previously unseen in archival VLA data. Thereafter, I present a multi-wavelength case study for two complementary mini-halos from our sample and show via a radio-to-X-ray spatial correlation test that they might be caused by different particle (re)-acceleration mechanisms. Through these initial science results, I have shown that future observations of radio mini-halos with MeerKAT are an exciting prospect that can lead to a better understanding of the fundamental physics behind these sources. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2023
- Full Text:
- Date Issued: 2023-10-13
MeerKAT observations of three high-redshift galaxy clusters
- Authors: Manaka, Sinah Mokatako
- Date: 2023-03-29
- Subjects: MeerKAT , Galaxies Clusters , Calibration , Radio interferometers , Radio halo
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/422367 , vital:71936
- Description: Galaxy clusters are the largest, gravitationally-bound structures in the Universe, formed through the hierarchical merger of smaller structures. The most accepted view is that the merging process injects energy into the intracluster medium (ICM) and re-accelerates pre-existing particles and compresses magnetic fields, generating, eventually, synchrotron emission. Such radio emission appears as radio halos, i.e. central Mpc-size diffuse structures, mostly visible in merging or unrelaxed clusters and with a spatial correspondence with the thermal gas component of the ICM. Observations have probed radio halo properties mostly for clusters withM500 > 6×1014 M⊙ at intermediate redshifts (0.3 < z < 0.4), providing support to their connection between mergers, which provide the necessary energy to re-accelerate particles via turbulence. Probing the redshift evolution of radio halos is an important test of the turbulent re-acceleration scenario, as fewer halos are expected at high redshift, given the same mass interval. In this thesis, we present MeerKAT observations at 1.28 GHz of three high-redshift (PSZ2G254.08- 58.45, PSZ2G255.60-46.18 and PSZ2G277.76-51.74, in the 0.42 ≲ z ≲ 0.46 range) clusters, with masses M500 ≳ 6.2 × 1014 M⊙, selected for their disturbed dynamical state – inferred from existing X-ray observations. Our observations reached rms noise values between 20 and 23.5 μJy beam−1, with ∼ 4′′ angular resolution. No evidence of diffuse emission is found at ii full resolution. Low-resolution (∼ 30′′) images achieved rms noise levels of 30-50 μJy beam−1, amongst the deepest observations of high-redshift targets. One radio halo was detected in the least massive cluster PSZ2G254.08-58.45 extending over ∼ 500 kpc, with a 1.20 } 0.08 mJy integrated flux density. We placed a ∼1 mJy upper limit at 95% confidence level on the radio halo flux density for the other two targets. The radio-halo detection is consistent with the recent P1.4 GHz − M500 correlation from Cuciti et al. (2021b), while the upper limit on PSZ2G255.60-46.18 is consistent with being on the correlation. On the other hand, the upper limit on PSZ2G277.76-51.74 places the radio halo well below the correlation. Recently a 1.5 GHz survey (Giovannini et al., 2020) detected a slightly higher fraction of radio halos in clusters in the same redshift range, with power and size typically higher than what we found in our observations. Both observations are, however, not inconsistent with each other. Our results, although with limited statistics, do not disfavour the current scenario of radiohalo formation based on the turbulent re-acceleration model. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2023
- Full Text:
- Date Issued: 2023-03-29
- Authors: Manaka, Sinah Mokatako
- Date: 2023-03-29
- Subjects: MeerKAT , Galaxies Clusters , Calibration , Radio interferometers , Radio halo
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/422367 , vital:71936
- Description: Galaxy clusters are the largest, gravitationally-bound structures in the Universe, formed through the hierarchical merger of smaller structures. The most accepted view is that the merging process injects energy into the intracluster medium (ICM) and re-accelerates pre-existing particles and compresses magnetic fields, generating, eventually, synchrotron emission. Such radio emission appears as radio halos, i.e. central Mpc-size diffuse structures, mostly visible in merging or unrelaxed clusters and with a spatial correspondence with the thermal gas component of the ICM. Observations have probed radio halo properties mostly for clusters withM500 > 6×1014 M⊙ at intermediate redshifts (0.3 < z < 0.4), providing support to their connection between mergers, which provide the necessary energy to re-accelerate particles via turbulence. Probing the redshift evolution of radio halos is an important test of the turbulent re-acceleration scenario, as fewer halos are expected at high redshift, given the same mass interval. In this thesis, we present MeerKAT observations at 1.28 GHz of three high-redshift (PSZ2G254.08- 58.45, PSZ2G255.60-46.18 and PSZ2G277.76-51.74, in the 0.42 ≲ z ≲ 0.46 range) clusters, with masses M500 ≳ 6.2 × 1014 M⊙, selected for their disturbed dynamical state – inferred from existing X-ray observations. Our observations reached rms noise values between 20 and 23.5 μJy beam−1, with ∼ 4′′ angular resolution. No evidence of diffuse emission is found at ii full resolution. Low-resolution (∼ 30′′) images achieved rms noise levels of 30-50 μJy beam−1, amongst the deepest observations of high-redshift targets. One radio halo was detected in the least massive cluster PSZ2G254.08-58.45 extending over ∼ 500 kpc, with a 1.20 } 0.08 mJy integrated flux density. We placed a ∼1 mJy upper limit at 95% confidence level on the radio halo flux density for the other two targets. The radio-halo detection is consistent with the recent P1.4 GHz − M500 correlation from Cuciti et al. (2021b), while the upper limit on PSZ2G255.60-46.18 is consistent with being on the correlation. On the other hand, the upper limit on PSZ2G277.76-51.74 places the radio halo well below the correlation. Recently a 1.5 GHz survey (Giovannini et al., 2020) detected a slightly higher fraction of radio halos in clusters in the same redshift range, with power and size typically higher than what we found in our observations. Both observations are, however, not inconsistent with each other. Our results, although with limited statistics, do not disfavour the current scenario of radiohalo formation based on the turbulent re-acceleration model. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2023
- Full Text:
- Date Issued: 2023-03-29
Third generation calibrations for Meerkat Observation of Saraswati Supercluster
- Authors: Kincaid, Robert Daniel
- Date: 2022-10-14
- Subjects: Square Kilometre Array (Project) , Superclusters , Saraswati Supercluster , Radio astronomy , MeerKAT , Calibration
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362916 , vital:65374
- Description: The international collaboration of the Square Kilometre Array (SKA), which is one of the largest and most challenging science projects of the 21st century, will bring a revolution in radio astronomy in terms of sensitivity and resolution. The recent launch of several new radio instruments, combined with the subsequent developments in calibration and imaging techniques, has dramatically advanced this field over the past few years, thus enhancing our knowledge of the radio universe. Various SKA pathfinders around the world have been developed (and more are planned for construction) that have laid down a firm foundation for the SKA in terms of science while additionally giving insight into the technological requirements required for the projected data outputs to become manageable. South Africa has recently built the new MeerKAT telescope, which is a SKA precursor forming an integral part of SKA-mid component. The MeerKAT instrument has unprecedented sensitivity that can cater for the required science goals of the current and future SKA era. It is noticeable from MeerKAT and other precursors that the data produced by these instruments are significantly challenging to calibrate and image. Calibration-related artefacts intrinsic to bright sources are of major concern since, they limit the Dynamic Range (DR) and image fidelity of the resulting images and cause flux suppression of extended sources. Diffuse radio sources from galaxy clusters in the form of halos, relics and most recently bridges on the Mpc scale, because of their diffuse nature combined with wide field of view (FoV) observations, make them particularly good candidates for testing the different approaches of calibration. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Kincaid, Robert Daniel
- Date: 2022-10-14
- Subjects: Square Kilometre Array (Project) , Superclusters , Saraswati Supercluster , Radio astronomy , MeerKAT , Calibration
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362916 , vital:65374
- Description: The international collaboration of the Square Kilometre Array (SKA), which is one of the largest and most challenging science projects of the 21st century, will bring a revolution in radio astronomy in terms of sensitivity and resolution. The recent launch of several new radio instruments, combined with the subsequent developments in calibration and imaging techniques, has dramatically advanced this field over the past few years, thus enhancing our knowledge of the radio universe. Various SKA pathfinders around the world have been developed (and more are planned for construction) that have laid down a firm foundation for the SKA in terms of science while additionally giving insight into the technological requirements required for the projected data outputs to become manageable. South Africa has recently built the new MeerKAT telescope, which is a SKA precursor forming an integral part of SKA-mid component. The MeerKAT instrument has unprecedented sensitivity that can cater for the required science goals of the current and future SKA era. It is noticeable from MeerKAT and other precursors that the data produced by these instruments are significantly challenging to calibrate and image. Calibration-related artefacts intrinsic to bright sources are of major concern since, they limit the Dynamic Range (DR) and image fidelity of the resulting images and cause flux suppression of extended sources. Diffuse radio sources from galaxy clusters in the form of halos, relics and most recently bridges on the Mpc scale, because of their diffuse nature combined with wide field of view (FoV) observations, make them particularly good candidates for testing the different approaches of calibration. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2022
- Full Text:
- Date Issued: 2022-10-14
Finite precision arithmetic in Polyphase Filterbank implementations
- Authors: Myburgh, Talon
- Date: 2020
- Subjects: Radio interferometers , Interferometry , Radio telescopes , Gate array circuits , Floating-point arithmetic , Python (Computer program language) , Polyphase Filterbank , Finite precision arithmetic , MeerKAT
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/146187 , vital:38503
- Description: The MeerKAT is the most sensitive radio telescope in its class, and it is important that systematic effects do not limit the dynamic range of the instrument, preventing this sensitivity from being harnessed for deep integrations. During commissioning, spurious artefacts were noted in the MeerKAT passband and the root cause was attributed to systematic errors in the digital signal path. Finite precision arithmetic used by the Polyphase Filterbank (PFB) was one of the main factors contributing to the spurious responses, together with bugs in the firmware. This thesis describes a software PFB simulator that was built to mimic the MeerKAT PFB and allow investigation into the origin and mitigation of the effects seen on the telescope. This simulator was used to investigate the effects in signal integrity of various rounding techniques, overflow strategies and dual polarisation processing in the PFB. Using the simulator to investigate a number of different signal levels, bit-width and algorithmic scenarios, it gave insight into how the periodic dips occurring in the MeerKAT passband were the result of the implementation using an inappropriate rounding strategy. It further indicated how to select the best strategy for preventing overflow while maintaining high quantization effciency in the FFT. This practice of simulating the design behaviour in the PFB independently of the tools used to design the DSP firmware, is a step towards an end-to-end simulation of the MeerKAT system (or any radio telescope using nite precision digital signal processing systems). This would be useful for design, diagnostics, signal analysis and prototyping of the overall instrument.
- Full Text:
- Date Issued: 2020
- Authors: Myburgh, Talon
- Date: 2020
- Subjects: Radio interferometers , Interferometry , Radio telescopes , Gate array circuits , Floating-point arithmetic , Python (Computer program language) , Polyphase Filterbank , Finite precision arithmetic , MeerKAT
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/146187 , vital:38503
- Description: The MeerKAT is the most sensitive radio telescope in its class, and it is important that systematic effects do not limit the dynamic range of the instrument, preventing this sensitivity from being harnessed for deep integrations. During commissioning, spurious artefacts were noted in the MeerKAT passband and the root cause was attributed to systematic errors in the digital signal path. Finite precision arithmetic used by the Polyphase Filterbank (PFB) was one of the main factors contributing to the spurious responses, together with bugs in the firmware. This thesis describes a software PFB simulator that was built to mimic the MeerKAT PFB and allow investigation into the origin and mitigation of the effects seen on the telescope. This simulator was used to investigate the effects in signal integrity of various rounding techniques, overflow strategies and dual polarisation processing in the PFB. Using the simulator to investigate a number of different signal levels, bit-width and algorithmic scenarios, it gave insight into how the periodic dips occurring in the MeerKAT passband were the result of the implementation using an inappropriate rounding strategy. It further indicated how to select the best strategy for preventing overflow while maintaining high quantization effciency in the FFT. This practice of simulating the design behaviour in the PFB independently of the tools used to design the DSP firmware, is a step towards an end-to-end simulation of the MeerKAT system (or any radio telescope using nite precision digital signal processing systems). This would be useful for design, diagnostics, signal analysis and prototyping of the overall instrument.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »