Composition and physiological roles of gut microbiota in the False Coding Moth (Thaumatotibia leucotreta)
- Authors: Richardson, Perryn Heather
- Date: 2023-10-13
- Subjects: False codling moth , Microbiomes , Insect physiology , Citrus Diseases and pests South Africa , Biological pest control , Cryptophlebia leucotreta
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424457 , vital:72155
- Description: Gut microbiota can have a profound influence on host performance, behaviour and fitness. For False Codling Moth (FCM), Thaumatotibia leucotreta (Lepidoptera: Tortricidae), a major pest of citrus in South Africa, little work has been undertaken to date on gut microbe diversity or its influence on the host. This thesis aimed to i) characterise the gut microbiome of FCM under laboratory conditions and in FCM from the field, ii) and produce moths with reduced gut microbiota through egg dechorionation, which was followed by iii) the measurement of a suite of physiological traits, namely mass, survival and thermal stress in FCM from normal laboratory, dechorionated laboratory and field collected larvae that may be indicative of overall field performance. We aimed to directly test the hypothesis that gut microbial diversity partly determines insect performance and fitness by measuring its effects on growth, development, and tolerance to cold temperatures in FCM. FCM eggs that underwent dechorionation with sodium hypochlorite had an overall effect on larval survival, egg morphology and both larval and adult moth physiological measures. Increasing concentrations of sodium hypochlorite significantly decreased insect survival, (𝜒2(1, n = 10 850) = 21.724, p-value < 0.0001), with a concentration of ≈3.69% as the concentration limit (p-value < 0.001). Successful dechorionation of FCM was achieved with a wash of sodium hypochlorite at around 3.69% concentration and was visually confirmed by reduction of FCM egg surface area, (𝜒2(25, n = 260) p-value < 0.0001) and Scanning Electron Micrographs of the egg morphology. The gut microbiome of FCM from the different focus treatments was successfully characterized. Identification of the dominant bacterial families in these microbiomes revealed Xanthobacteraceae, Beijerinckiaceae and Burkholderiaceae in both the laboratory reared and field collected larvae, which suggests their systematic association with T. leucotreta. The most abundant genera were revealed as Bradyrhizobium, Methylobacterium and Burkholderia-Caballeronia-Paraburkholderia. Comparison of larval mass showed that treatment (dechorionated or not) had a significant effect on larval mass (𝜒2(2, n = 230) = 22.703, p-value < 0.001), field larvae were heavier than both control larvae and larvae with a disrupted gut microbiome. However, adult insects with a disrupted gut microbiome had more mass than individuals from the control and field-collected larvae with intact gut microbiomes (𝜒2(2, n = 230) = 39.074, p-value < 0.001). Despite the difference in mass between larval treatments, there was no significant difference in relative protein (𝜒2(2, n = 24) = 5.680, p-value = 0.06), carbohydrate (𝜒2(2, n = 24) = 3.940, p-value = 0.14) or lipid (𝜒2(2, n = 24) = 6.032, p-value = 0.05) content between individuals from the control and dechorionated treatments and field-collected individuals. Turning to thermal physiology, insects collected from the field took significantly longer to recover from chill coma than both laboratory treatments with intact and disrupted gut microbiomes (𝜒2(2, n = 129 = 39.659, p-value < 0.001). In addition, exposure to cold stress showed that treatment had a significant effect on insect mortality (𝜒2(2, n = 272) = 9.176, p-value = 0.01), with individuals from the control and dechorionated treatment being less likely to die after experiencing cold stress compared to field-collected individuals. Differences in the mass and thermal tolerance of insects with intact and disrupted gut microbiota suggest that gut microbiota may play an important role in the cold performance of T. leucotreta, and these findings constitute the basis for future molecular work on the functions of these bacterial taxa. This research highlights the need for consideration of the effects of T. leucotreta microbiome in current pest control programs. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Richardson, Perryn Heather
- Date: 2023-10-13
- Subjects: False codling moth , Microbiomes , Insect physiology , Citrus Diseases and pests South Africa , Biological pest control , Cryptophlebia leucotreta
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424457 , vital:72155
- Description: Gut microbiota can have a profound influence on host performance, behaviour and fitness. For False Codling Moth (FCM), Thaumatotibia leucotreta (Lepidoptera: Tortricidae), a major pest of citrus in South Africa, little work has been undertaken to date on gut microbe diversity or its influence on the host. This thesis aimed to i) characterise the gut microbiome of FCM under laboratory conditions and in FCM from the field, ii) and produce moths with reduced gut microbiota through egg dechorionation, which was followed by iii) the measurement of a suite of physiological traits, namely mass, survival and thermal stress in FCM from normal laboratory, dechorionated laboratory and field collected larvae that may be indicative of overall field performance. We aimed to directly test the hypothesis that gut microbial diversity partly determines insect performance and fitness by measuring its effects on growth, development, and tolerance to cold temperatures in FCM. FCM eggs that underwent dechorionation with sodium hypochlorite had an overall effect on larval survival, egg morphology and both larval and adult moth physiological measures. Increasing concentrations of sodium hypochlorite significantly decreased insect survival, (𝜒2(1, n = 10 850) = 21.724, p-value < 0.0001), with a concentration of ≈3.69% as the concentration limit (p-value < 0.001). Successful dechorionation of FCM was achieved with a wash of sodium hypochlorite at around 3.69% concentration and was visually confirmed by reduction of FCM egg surface area, (𝜒2(25, n = 260) p-value < 0.0001) and Scanning Electron Micrographs of the egg morphology. The gut microbiome of FCM from the different focus treatments was successfully characterized. Identification of the dominant bacterial families in these microbiomes revealed Xanthobacteraceae, Beijerinckiaceae and Burkholderiaceae in both the laboratory reared and field collected larvae, which suggests their systematic association with T. leucotreta. The most abundant genera were revealed as Bradyrhizobium, Methylobacterium and Burkholderia-Caballeronia-Paraburkholderia. Comparison of larval mass showed that treatment (dechorionated or not) had a significant effect on larval mass (𝜒2(2, n = 230) = 22.703, p-value < 0.001), field larvae were heavier than both control larvae and larvae with a disrupted gut microbiome. However, adult insects with a disrupted gut microbiome had more mass than individuals from the control and field-collected larvae with intact gut microbiomes (𝜒2(2, n = 230) = 39.074, p-value < 0.001). Despite the difference in mass between larval treatments, there was no significant difference in relative protein (𝜒2(2, n = 24) = 5.680, p-value = 0.06), carbohydrate (𝜒2(2, n = 24) = 3.940, p-value = 0.14) or lipid (𝜒2(2, n = 24) = 6.032, p-value = 0.05) content between individuals from the control and dechorionated treatments and field-collected individuals. Turning to thermal physiology, insects collected from the field took significantly longer to recover from chill coma than both laboratory treatments with intact and disrupted gut microbiomes (𝜒2(2, n = 129 = 39.659, p-value < 0.001). In addition, exposure to cold stress showed that treatment had a significant effect on insect mortality (𝜒2(2, n = 272) = 9.176, p-value = 0.01), with individuals from the control and dechorionated treatment being less likely to die after experiencing cold stress compared to field-collected individuals. Differences in the mass and thermal tolerance of insects with intact and disrupted gut microbiota suggest that gut microbiota may play an important role in the cold performance of T. leucotreta, and these findings constitute the basis for future molecular work on the functions of these bacterial taxa. This research highlights the need for consideration of the effects of T. leucotreta microbiome in current pest control programs. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13
Microbial and extracellular polymeric substance dynamics in arid–zone temporary pan ecosystems
- Authors: Bute, Tafara Frank
- Date: 2023-03-29
- Subjects: Extracellular polymeric substances , Biofilms , Vernal pools , Microbiomes , Sediment–water interface
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/422258 , vital:71925
- Description: Microbial communities of bacteria, viruses, algae, protozoans and fungi participate profoundly in aquatic systems, particularly in mediating processes such as primary production, decomposition, and biogeochemical cycles. In addition, microbiomes produce extracellular polymeric substances (EPS) which encompass a hydrated exopolymer mainly constituted of carbohydrates and proteins. The exopolymer aid proliferation and persistence of biofilms on their resident surfaces. There is however paucity of data on functional diversity of microbiomes in arid zone temporary wetlands with previous research having mainly focused on permanent systems in the northern hemisphere. In the face of ongoing climatic changes and anthropogenic threats to wetlands, it is imperative to assess the health status of aquatic systems in relation to microbial productivity dynamics. In this thesis, colorimetric methods and sequence–based metagenomics were conducted to quantify microbial EPS production and bacterial metagenome functions, respectively. This study was conducted in Khakhea–Bray region (North–West, South Africa) in June 2021 and January 2022 with a focus on evaluating microbial patterns of distribution between seasons (i.e., Dry and Wet) and varying depth i.e., deepest zones (Deep), intermediate depth (Mid) and shallowest regions (Edge). Additionally, potential relationships between EPS and either water content or organic matter content (OM content) were evaluated. In this study it was hypothesized that wet phases and deeper zones will have high EPS production and support more functions in comparison to shallowest regions and dry phases. Carbohydrates and proteins were quantified using the Dubois method and modified Lowry procedure, respectively. Carbohydrates generally occurred in higher proportions than proteins, suggesting that EPS found in these systems was largely diatom produced. The wet phases (wet season and inundation periods) supported more EPS production compared to the dry phases. The results of principal components analysis (PCA) and Spearman’s correlations suggested that EPS was highly correlated with sediment water content among other assessed variables. No significant associations were established between EPS and organic matter content. Spatial distribution of EPS demonstrated similar patterns between the deepest (Deep) and the intermediate depth zones (Mid) however the shallow regions (Edge) had significantly lower concentrations. Bacterial characterization was established by amplification of the 16S rRNA gene using illumina–sequencing protocol. Enzyme functions associated with biogeochemical pathways were predicted in PICRUSt2 bioinformatics pipeline. A total of 15 042 Unique Amplicon Sequence Variants (ASVs) were observed to be affiliated to 51 bacterial phyla and 1 127 genera. All top genera had commonality in heat tolerance. Firmicutes, dominated at phyla level with 59 % (mean ± sd, 19 ± 13 %) relative abundance followed by Actinobacteria and Proteobacteria both at 34 % (18 ± 7 %) and (18 ± 6 %), respectively. Microbial diversity matrices highlighted significant differences in beta diversity more than alpha diversity. Bacterial microbiomes were more distinct between seasons compared to within season, suggesting that functions were seasonally driven. These findings were supported by highest rates of denitrification, carbohydrate degradation and EPS production by core microbiomes in the wet season as compared to low rates of nitrogen mineralisation, carbon fixation and nitrification in the dry season. The present findings represent a first attempt in evaluating sequence–based metagenomics in semi–arid southern African temporary pan ecosystem. Both microbial EPS and bacterial functional potential were highly driven by water availability, with highest rates mainly associated with maximum inundation compared to dry states of pans. It can therefore be suggested that extended dry periods are threatening to microbially mediated processes in temporary wetlands, with implications to loss of biodiversity due to desiccation resulting in poor nutrient cycling. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-03-29
- Authors: Bute, Tafara Frank
- Date: 2023-03-29
- Subjects: Extracellular polymeric substances , Biofilms , Vernal pools , Microbiomes , Sediment–water interface
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/422258 , vital:71925
- Description: Microbial communities of bacteria, viruses, algae, protozoans and fungi participate profoundly in aquatic systems, particularly in mediating processes such as primary production, decomposition, and biogeochemical cycles. In addition, microbiomes produce extracellular polymeric substances (EPS) which encompass a hydrated exopolymer mainly constituted of carbohydrates and proteins. The exopolymer aid proliferation and persistence of biofilms on their resident surfaces. There is however paucity of data on functional diversity of microbiomes in arid zone temporary wetlands with previous research having mainly focused on permanent systems in the northern hemisphere. In the face of ongoing climatic changes and anthropogenic threats to wetlands, it is imperative to assess the health status of aquatic systems in relation to microbial productivity dynamics. In this thesis, colorimetric methods and sequence–based metagenomics were conducted to quantify microbial EPS production and bacterial metagenome functions, respectively. This study was conducted in Khakhea–Bray region (North–West, South Africa) in June 2021 and January 2022 with a focus on evaluating microbial patterns of distribution between seasons (i.e., Dry and Wet) and varying depth i.e., deepest zones (Deep), intermediate depth (Mid) and shallowest regions (Edge). Additionally, potential relationships between EPS and either water content or organic matter content (OM content) were evaluated. In this study it was hypothesized that wet phases and deeper zones will have high EPS production and support more functions in comparison to shallowest regions and dry phases. Carbohydrates and proteins were quantified using the Dubois method and modified Lowry procedure, respectively. Carbohydrates generally occurred in higher proportions than proteins, suggesting that EPS found in these systems was largely diatom produced. The wet phases (wet season and inundation periods) supported more EPS production compared to the dry phases. The results of principal components analysis (PCA) and Spearman’s correlations suggested that EPS was highly correlated with sediment water content among other assessed variables. No significant associations were established between EPS and organic matter content. Spatial distribution of EPS demonstrated similar patterns between the deepest (Deep) and the intermediate depth zones (Mid) however the shallow regions (Edge) had significantly lower concentrations. Bacterial characterization was established by amplification of the 16S rRNA gene using illumina–sequencing protocol. Enzyme functions associated with biogeochemical pathways were predicted in PICRUSt2 bioinformatics pipeline. A total of 15 042 Unique Amplicon Sequence Variants (ASVs) were observed to be affiliated to 51 bacterial phyla and 1 127 genera. All top genera had commonality in heat tolerance. Firmicutes, dominated at phyla level with 59 % (mean ± sd, 19 ± 13 %) relative abundance followed by Actinobacteria and Proteobacteria both at 34 % (18 ± 7 %) and (18 ± 6 %), respectively. Microbial diversity matrices highlighted significant differences in beta diversity more than alpha diversity. Bacterial microbiomes were more distinct between seasons compared to within season, suggesting that functions were seasonally driven. These findings were supported by highest rates of denitrification, carbohydrate degradation and EPS production by core microbiomes in the wet season as compared to low rates of nitrogen mineralisation, carbon fixation and nitrification in the dry season. The present findings represent a first attempt in evaluating sequence–based metagenomics in semi–arid southern African temporary pan ecosystem. Both microbial EPS and bacterial functional potential were highly driven by water availability, with highest rates mainly associated with maximum inundation compared to dry states of pans. It can therefore be suggested that extended dry periods are threatening to microbially mediated processes in temporary wetlands, with implications to loss of biodiversity due to desiccation resulting in poor nutrient cycling. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-03-29
- «
- ‹
- 1
- ›
- »