Composition and fate of triclosan in the sludge from wastewater treatment in Grahamstown, South Africa and Tiaret, Algeria
- Authors: Ncube, Mbonisi
- Date: 2017
- Subjects: Sewage sludge , Sewage Purification South Africa Grahamstown , Sewage Purification Algeria Tiaret , Sewage sludge as fertilizer , Anti-infective agents
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/65156 , vital:28697
- Description: Physicochemical properties such as pH, specific surface area (SSA), cationic exchange capacity (CEC), loss on ignition (LOI), pathogens, plant nutrients (nitrates, ammonium and phosphates), and heavy metals (manganese, copper, lead and cadmium) were determined for sewage sludge from Grahamstown and Tiaret. The values obtained were log transformed thereafter a t-test at 5 % level of significance was used to test for the difference in each parameter for both sludges. The pH of sludge was determined in 1:3 water, 16 water, 1:3 0.01 M calcium chloride and 1:3 1 M potassium chloride. The pH for Grahamstown and Tiaret sludge were in the ranges of 6.66-7.11 and 7.88-8.18 respectively. The SSA values for Grahamstown and Tiaret were 218 ± 108 and 261 ± 99.9 m2/g, and the CEC values were 119 ± 2.09 and 136 ± 6.03 mEq/100, respectively. The LOI values obtained were 1.33 ± 0.03 and 1.48 ± 0.11 % for Grahamstown and Tiaret, respectively. E. coll and heterotrophic bacteria were the pathogens determined, and were extracted from sludge using sterile saline and nutrient broth. The concentration of E. coll in Grahamstown and Tiaret sludge were 468 ± 7.63 and 7769 ± 1268 CFU/g d.w and for heterotrophic bacteria were 1.17x109 ± 7.42x108 and 1.43x109 ± 9.11 x108 CFU/g d.w. For Grahamstown sludge, the concentration of nitrates, ammonium and phosphates were 55.61 ± 55.20 mg/g d.w, 6.60 ± 2.36 mg/g d.w and 1.40 ± 0.30 mg/g d.w, respectively. For Tiaret sludge, the concentration of nitrates, ammonium and phosphates were 2.56 ± 2.90 mg/g d.w, 0.64 ± 0.45 mg/g d.w and 0.24 ± 0.19 mg/g d.w, respectively. The concentration of Mn, Cu, Pb and Cd in Grahamstown sludge were 423 ± 101, 353 ± 92, 40.2 ± 20 and 0.0 mg/kg d.w respectively, and for Tiaret sludge, the corresponding concentrations were 358± 295, 549±50, 1427± 1352 and 1.54 ± 0.61 mg/kg d.w. Sewage sludge was found to contain Triclosan, and solubility studies of the compound were conducted using sodium deoxycholate and sodium lithocholate. The apparent solubilities and rate constants indicated in brackets of TCS at 37 °C were 35.4 ± 1.21 mg/L (1.28 ± 0.36 Hr-) and 14.4 ± 0.34 mg/L (0.99 ± 0.17 Hr-) in sodium lithocholate and sodium deoxycholate, respectively. The apparent solubilities and rate constants indicated in brackets of TCS at 15 °C were 32.3 ± 0.88 mg/L (2.16 ± 0.80 Hr-) and 14.2 ± 0.39 mg/L (1.02 ± 0.17 Hr-) in sodium lithocholate and sodium deoxycholate, respectively. Triclosan was extracted from sludge using 1 g/L sodium deoxycholate and the determined concentration were 142 ± 33.5 gg/g d.w for Grahamstown sludge and 0-12 gg/g d.w for Tiaret sludge. Finally plant growth studies were conducted on radish and garden cress plants using Grahamstown sludge at 0, 20, 40, 80 and 100 % treatments. Statistical analysis (t-test and Kruskal-Wallis) at 5 % level of significance was done to compare growth parameters between control and different sludge treatments. For radish plants, the values for plant height, root length, number of leaves, leaf length and dry mass were 28.4-80-7 mm, 4.3-44.7 mm, 3.3-17.0 mm, 2.3-4.0 leaves and 6.3-15.3 %, respectively. For garden cress, the values for plant height, root length, number of leaves, leaf length and dry mass were 13.7-25.0 mm, 7.7-20.3 mm, 5.7-8.3 leaves, 3.0-8.3 mm and 8.8-15.0 %, respectively. Twenty percent (20 %) sludge treatment gave the best results in radish and garden cress plants with respect to plant height, root length, number of leaves and dry mass. Triclosan concentration in radish and garden cress plants was below the detection limit of 32.4 gg/g d.w. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2017
- Full Text:
- Date Issued: 2017
- Authors: Ncube, Mbonisi
- Date: 2017
- Subjects: Sewage sludge , Sewage Purification South Africa Grahamstown , Sewage Purification Algeria Tiaret , Sewage sludge as fertilizer , Anti-infective agents
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/65156 , vital:28697
- Description: Physicochemical properties such as pH, specific surface area (SSA), cationic exchange capacity (CEC), loss on ignition (LOI), pathogens, plant nutrients (nitrates, ammonium and phosphates), and heavy metals (manganese, copper, lead and cadmium) were determined for sewage sludge from Grahamstown and Tiaret. The values obtained were log transformed thereafter a t-test at 5 % level of significance was used to test for the difference in each parameter for both sludges. The pH of sludge was determined in 1:3 water, 16 water, 1:3 0.01 M calcium chloride and 1:3 1 M potassium chloride. The pH for Grahamstown and Tiaret sludge were in the ranges of 6.66-7.11 and 7.88-8.18 respectively. The SSA values for Grahamstown and Tiaret were 218 ± 108 and 261 ± 99.9 m2/g, and the CEC values were 119 ± 2.09 and 136 ± 6.03 mEq/100, respectively. The LOI values obtained were 1.33 ± 0.03 and 1.48 ± 0.11 % for Grahamstown and Tiaret, respectively. E. coll and heterotrophic bacteria were the pathogens determined, and were extracted from sludge using sterile saline and nutrient broth. The concentration of E. coll in Grahamstown and Tiaret sludge were 468 ± 7.63 and 7769 ± 1268 CFU/g d.w and for heterotrophic bacteria were 1.17x109 ± 7.42x108 and 1.43x109 ± 9.11 x108 CFU/g d.w. For Grahamstown sludge, the concentration of nitrates, ammonium and phosphates were 55.61 ± 55.20 mg/g d.w, 6.60 ± 2.36 mg/g d.w and 1.40 ± 0.30 mg/g d.w, respectively. For Tiaret sludge, the concentration of nitrates, ammonium and phosphates were 2.56 ± 2.90 mg/g d.w, 0.64 ± 0.45 mg/g d.w and 0.24 ± 0.19 mg/g d.w, respectively. The concentration of Mn, Cu, Pb and Cd in Grahamstown sludge were 423 ± 101, 353 ± 92, 40.2 ± 20 and 0.0 mg/kg d.w respectively, and for Tiaret sludge, the corresponding concentrations were 358± 295, 549±50, 1427± 1352 and 1.54 ± 0.61 mg/kg d.w. Sewage sludge was found to contain Triclosan, and solubility studies of the compound were conducted using sodium deoxycholate and sodium lithocholate. The apparent solubilities and rate constants indicated in brackets of TCS at 37 °C were 35.4 ± 1.21 mg/L (1.28 ± 0.36 Hr-) and 14.4 ± 0.34 mg/L (0.99 ± 0.17 Hr-) in sodium lithocholate and sodium deoxycholate, respectively. The apparent solubilities and rate constants indicated in brackets of TCS at 15 °C were 32.3 ± 0.88 mg/L (2.16 ± 0.80 Hr-) and 14.2 ± 0.39 mg/L (1.02 ± 0.17 Hr-) in sodium lithocholate and sodium deoxycholate, respectively. Triclosan was extracted from sludge using 1 g/L sodium deoxycholate and the determined concentration were 142 ± 33.5 gg/g d.w for Grahamstown sludge and 0-12 gg/g d.w for Tiaret sludge. Finally plant growth studies were conducted on radish and garden cress plants using Grahamstown sludge at 0, 20, 40, 80 and 100 % treatments. Statistical analysis (t-test and Kruskal-Wallis) at 5 % level of significance was done to compare growth parameters between control and different sludge treatments. For radish plants, the values for plant height, root length, number of leaves, leaf length and dry mass were 28.4-80-7 mm, 4.3-44.7 mm, 3.3-17.0 mm, 2.3-4.0 leaves and 6.3-15.3 %, respectively. For garden cress, the values for plant height, root length, number of leaves, leaf length and dry mass were 13.7-25.0 mm, 7.7-20.3 mm, 5.7-8.3 leaves, 3.0-8.3 mm and 8.8-15.0 %, respectively. Twenty percent (20 %) sludge treatment gave the best results in radish and garden cress plants with respect to plant height, root length, number of leaves and dry mass. Triclosan concentration in radish and garden cress plants was below the detection limit of 32.4 gg/g d.w. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2017
- Full Text:
- Date Issued: 2017
The enzymology of enhanced hydrolysis within the biosulphidogenic recycling sludge bed reactor (RSBR)
- Authors: Enongene, Godlove Nkwelle
- Date: 2004
- Subjects: Hydrolysis , Sewage sludge , Sewage -- Purification -- Anaerobic treatment , Water -- Purification -- Biological treatment
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4132 , http://hdl.handle.net/10962/d1015744
- Description: The hydrolysis of complex organic heteropolymers contained in municipal wastewater to simpler monomers by extracellular hydrolytic enzymes is generally considered the rate-limiting step of the biodegradation process. Previous studies of the Recycling Sludge Bed Reactor (RSBR) revealed that the hydrolysis of complex particulate organics, such as those contained in primary sludge (PS), was enhanced under anaerobic biosulphidogenic conditions. Although the mechanism was not fully understood, it appeared to involve the interaction of sulfide and sludge flocs. The current study was conducted using a 3500 ml laboratory-scale RSBR fed sieved PS at a loading rate of 0.5 kg COD/m³.day and an initial chemical oxygen demand (COD) to sulfate ratio (COD:SO₄) of 1:1. There was no significant accumulation of undigested sludge in the reactor over the 60-day experimental period and the quantity of SO₄ reduced indicated that the yield of soluble products from PS was at least as high as those reported previously for this system (> 50%). In the current study, the specific activities of a range of extracellular hydrolytic enzymes (L-alanine aminopeptidase, L-leucine aminopeptidase, arylsulphatase, α-glucosidase, β- glucosidase, protease and lipase) were monitored in a sulfide gradient within a biosulphidogenic RSBR. Data obtained indicated that the specific enzymatic activities increased with the depth of the RSBR and also correlated with a number of the physicochemical parameters including sulfide, alkalinity and sulfate. The activities of α- glucosidase and β-glucosidase were higher than that of the other enzymes studied. Lipase activity was relatively low and studies conducted on the enzyme-enzyme interaction using specific enzyme inhibitors indicated that lipases were probably being digested by the proteases. Further studies to determine the impact of sulfide on the enzymes, showed an increase in the enzyme activity with increasing sulfide concentration. Possible direct affects were investigated by looking for changes in the Michaelis constant (Km) and the maximal velocity (Vmax) of the crude enzymes with varying sulfide concentrations (250, 400 and 500 mg/l) using natural and synthetic substrates. The results showed no significant difference in both the Km and the Vmax for any of the hydrolytic enzymes except for the protease. The latter showed a statistically significant increase in the Km with increasing sulfide concentration. Although this indicated a direct interaction, this difference was not large enough to be of biochemical significance and was consequently not solely responsible for the enhanced hydrolysis observed in the RSBR. Investigation into the floc characteristics indicated that the biosulphidogenic RSBR flocs were generally small in size and became more dendritic with the depth of the RSBR. Based on the above data, the previously proposed descriptive models of enhanced hydrolysis of particulate organic matter in a biosulphidogenic RSBR has been revised. It is thought that the effect of sulfide on the hydrolysis step is primarily indirect and that the reduction in floc size and alteration of the floc shape to a more dendritic form is central to the success of the process.
- Full Text:
- Date Issued: 2004
- Authors: Enongene, Godlove Nkwelle
- Date: 2004
- Subjects: Hydrolysis , Sewage sludge , Sewage -- Purification -- Anaerobic treatment , Water -- Purification -- Biological treatment
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4132 , http://hdl.handle.net/10962/d1015744
- Description: The hydrolysis of complex organic heteropolymers contained in municipal wastewater to simpler monomers by extracellular hydrolytic enzymes is generally considered the rate-limiting step of the biodegradation process. Previous studies of the Recycling Sludge Bed Reactor (RSBR) revealed that the hydrolysis of complex particulate organics, such as those contained in primary sludge (PS), was enhanced under anaerobic biosulphidogenic conditions. Although the mechanism was not fully understood, it appeared to involve the interaction of sulfide and sludge flocs. The current study was conducted using a 3500 ml laboratory-scale RSBR fed sieved PS at a loading rate of 0.5 kg COD/m³.day and an initial chemical oxygen demand (COD) to sulfate ratio (COD:SO₄) of 1:1. There was no significant accumulation of undigested sludge in the reactor over the 60-day experimental period and the quantity of SO₄ reduced indicated that the yield of soluble products from PS was at least as high as those reported previously for this system (> 50%). In the current study, the specific activities of a range of extracellular hydrolytic enzymes (L-alanine aminopeptidase, L-leucine aminopeptidase, arylsulphatase, α-glucosidase, β- glucosidase, protease and lipase) were monitored in a sulfide gradient within a biosulphidogenic RSBR. Data obtained indicated that the specific enzymatic activities increased with the depth of the RSBR and also correlated with a number of the physicochemical parameters including sulfide, alkalinity and sulfate. The activities of α- glucosidase and β-glucosidase were higher than that of the other enzymes studied. Lipase activity was relatively low and studies conducted on the enzyme-enzyme interaction using specific enzyme inhibitors indicated that lipases were probably being digested by the proteases. Further studies to determine the impact of sulfide on the enzymes, showed an increase in the enzyme activity with increasing sulfide concentration. Possible direct affects were investigated by looking for changes in the Michaelis constant (Km) and the maximal velocity (Vmax) of the crude enzymes with varying sulfide concentrations (250, 400 and 500 mg/l) using natural and synthetic substrates. The results showed no significant difference in both the Km and the Vmax for any of the hydrolytic enzymes except for the protease. The latter showed a statistically significant increase in the Km with increasing sulfide concentration. Although this indicated a direct interaction, this difference was not large enough to be of biochemical significance and was consequently not solely responsible for the enhanced hydrolysis observed in the RSBR. Investigation into the floc characteristics indicated that the biosulphidogenic RSBR flocs were generally small in size and became more dendritic with the depth of the RSBR. Based on the above data, the previously proposed descriptive models of enhanced hydrolysis of particulate organic matter in a biosulphidogenic RSBR has been revised. It is thought that the effect of sulfide on the hydrolysis step is primarily indirect and that the reduction in floc size and alteration of the floc shape to a more dendritic form is central to the success of the process.
- Full Text:
- Date Issued: 2004
The enzymology of sludge solubilisation under biosulphidogenic conditions : isolation, characterisation and partial purification of endoglucanases
- Authors: Oyekola, Oluwaseun Oyekanmi
- Date: 2004
- Subjects: Sewage -- Purification -- Anaerobic treatment , Anaerobic bacteria , Sewage sludge , Hydrolysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3921 , http://hdl.handle.net/10962/d1003980 , Sewage -- Purification -- Anaerobic treatment , Anaerobic bacteria , Sewage sludge , Hydrolysis
- Description: Endoglucanases play an important function in cellulose hydrolysis and catalyse the initial attack on the polymer by randomly hydrolysing the β-1,4 glucosidic bonds within the amorphous regions of cellulose chains. Cellulolytic bacteria have been isolated and characterised from the sewage sludge and the activation of several hydrolytic enzymes under biosulphidogenic conditions of sewage hydrolysis has been reported. The aims of this study were to: identify, induce production, locate and isolate, characterise (physicochemical and kinetic) and purify endoglucanases from anaerobic biosulphidogenic sludge. The endoglucanase activities were shown to be associated with the pellet particulate matter and exhibited a pH optimum of 6 and temperature optimum of 50 °C. The enzymes were thermally more stable when immobilised to the floc matrix of the sludge than when they were released into the aqueous solution via sonication. For both immobilised and released enzymes, sulphate was slightly inhibitory; activity was reduced to 84 % and 77.5 % of the initial activity at sulphate concentrations between 200 and 1000 mg/l, respectively. Sulphite was stimulatory to the immobilised enzymes between 200 and 1000 mg/l. Sulphide stimulated the activities of the immobilised endoglucanases, but inhibited activities of the soluble enzymes above 200 mg/l. The enzyme fraction did not hydrolyse avicel (a crystalline substrate), indicating the absence of any exocellulase activity. For CMC (carboxymethylcellulose) and HEC (hydroxylethylcellulose) the enzyme had K_m,app_ values of 4 and 5.1 mg/ml respectively and V_max,app_ values of 0.297 and 0.185 μmol/min/ml respectively. Divalent ions (Cu²⁺, Ni²⁺ and Zn²⁺) proved to be inhibitory while Fe²⁺, Mg²⁺ and Ca²⁺ stimulated the enzyme at concentrations between 200 and 1000 mg/l. All the volatile fatty acids studied (acetic acid, butyric acid, propionic acid and valeric acid) inhibited the enzymes, with acetic acid eliciting the highest degree of inhibition. Sonication released ~74.9 % of the total enzyme activities into solution and this was partially purified by PEG 20 000 concentration followed by DEAE-Cellulose ion exchange chromatography, which resulted in an appreciable purity as measured by the purification factor, 25.4 fold.
- Full Text:
- Date Issued: 2004
- Authors: Oyekola, Oluwaseun Oyekanmi
- Date: 2004
- Subjects: Sewage -- Purification -- Anaerobic treatment , Anaerobic bacteria , Sewage sludge , Hydrolysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3921 , http://hdl.handle.net/10962/d1003980 , Sewage -- Purification -- Anaerobic treatment , Anaerobic bacteria , Sewage sludge , Hydrolysis
- Description: Endoglucanases play an important function in cellulose hydrolysis and catalyse the initial attack on the polymer by randomly hydrolysing the β-1,4 glucosidic bonds within the amorphous regions of cellulose chains. Cellulolytic bacteria have been isolated and characterised from the sewage sludge and the activation of several hydrolytic enzymes under biosulphidogenic conditions of sewage hydrolysis has been reported. The aims of this study were to: identify, induce production, locate and isolate, characterise (physicochemical and kinetic) and purify endoglucanases from anaerobic biosulphidogenic sludge. The endoglucanase activities were shown to be associated with the pellet particulate matter and exhibited a pH optimum of 6 and temperature optimum of 50 °C. The enzymes were thermally more stable when immobilised to the floc matrix of the sludge than when they were released into the aqueous solution via sonication. For both immobilised and released enzymes, sulphate was slightly inhibitory; activity was reduced to 84 % and 77.5 % of the initial activity at sulphate concentrations between 200 and 1000 mg/l, respectively. Sulphite was stimulatory to the immobilised enzymes between 200 and 1000 mg/l. Sulphide stimulated the activities of the immobilised endoglucanases, but inhibited activities of the soluble enzymes above 200 mg/l. The enzyme fraction did not hydrolyse avicel (a crystalline substrate), indicating the absence of any exocellulase activity. For CMC (carboxymethylcellulose) and HEC (hydroxylethylcellulose) the enzyme had K_m,app_ values of 4 and 5.1 mg/ml respectively and V_max,app_ values of 0.297 and 0.185 μmol/min/ml respectively. Divalent ions (Cu²⁺, Ni²⁺ and Zn²⁺) proved to be inhibitory while Fe²⁺, Mg²⁺ and Ca²⁺ stimulated the enzyme at concentrations between 200 and 1000 mg/l. All the volatile fatty acids studied (acetic acid, butyric acid, propionic acid and valeric acid) inhibited the enzymes, with acetic acid eliciting the highest degree of inhibition. Sonication released ~74.9 % of the total enzyme activities into solution and this was partially purified by PEG 20 000 concentration followed by DEAE-Cellulose ion exchange chromatography, which resulted in an appreciable purity as measured by the purification factor, 25.4 fold.
- Full Text:
- Date Issued: 2004
The hydrolysis of primary sewage sludge under biosulphidogenic conditions
- Molwantwa, Jennifer Balatedi
- Authors: Molwantwa, Jennifer Balatedi
- Date: 2003
- Subjects: Sewage sludge , Hydrolysis , Sewage -- Purification -- Activated sludge process
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3961 , http://hdl.handle.net/10962/d1004020 , Sewage sludge , Hydrolysis , Sewage -- Purification -- Activated sludge process
- Description: The potential for using readily available and cost-effective complex carbon sources such as primary sewage sludge for a range of environmental remediation processes, including biological sulphate reduction, biological nutrient removal and the bioremediation of acid mine drainage, has been constrained by the slow rate of solubilization and low yield of soluble products, which drive the above mentioned processes. Previous work conducted by the Environmental Biotechnology Group at Rhodes University indicated that the degradation of primary sewage sludge was enhanced under sulphate reducing conditions. This was proven in both laboratory and pilot-scale (Reciprocating Sludge Bed Reactor) systems, where the particulate matter accumulated in the sludge bed and the molecules in smaller flocs were rapidly solubilized. The current study was aimed at investigating in more detail the factors that govern the enhanced hydrolysis under sulphate reducing conditions, and to develop a descriptive model to explain the underlying mechanism involved. The solubilization of primary sewage sludge under sulphate reducing conditions was conducted in controlled flask studies and previously reported findings of enhanced hydrolysis were confirmed. The maximum percentage solubilization obtained in this study was 31% and 63% for the methanogenic and sulphidogenic systems respectively, and this was achieved over a period of 10 days. A rate of reducing sugar production and complex molecule breakdown of 51 mg. L⁻¹.hr⁻¹ and 167 mg.L⁻¹.hr⁻¹ was observed for the methanogenic and sulphidogenic systems respectively. The flask studies revealed that during hydrolysis of primary sewage sludge under sulphidogenic conditions there was enhanced production of soluble products, specifically carbohydrates (reducing sugars) and volatile fatty acids, compared to methanogenic conditions. The rate at which these products were utilized was also found to be more rapid under sulphidogenic as compared to methanogenic conditions. A study of the distribution of volatile fatty acids indicated that acetate was utilized preferentially in the methanogenic system, and that propionate, butyrate and valerate accumulated with time. The converse was found to occur in the sulphidogenic system. The descriptive model developed from the results of this study was based on the fact that a consortium of bacteria, composed of hydrolytic, acidogenic and acetogenic species, carries out the solubilization of complex carbon sources. Furthermore, it is essential that equilibrium between product formation and utilization is maintained, and that accumulation of soluble end products impacts negatively on the rate of the hydrolysis step. It is therefore proposed that the relatively poor utilization of VFA and reducing sugars in the methanogenic system activates a negative feedback inhibition on the hydrolytic and/ or acidogenic step. This inhibition is reduced in the sulphidogenic system where the utilization of end products is higher.
- Full Text:
- Date Issued: 2003
- Authors: Molwantwa, Jennifer Balatedi
- Date: 2003
- Subjects: Sewage sludge , Hydrolysis , Sewage -- Purification -- Activated sludge process
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3961 , http://hdl.handle.net/10962/d1004020 , Sewage sludge , Hydrolysis , Sewage -- Purification -- Activated sludge process
- Description: The potential for using readily available and cost-effective complex carbon sources such as primary sewage sludge for a range of environmental remediation processes, including biological sulphate reduction, biological nutrient removal and the bioremediation of acid mine drainage, has been constrained by the slow rate of solubilization and low yield of soluble products, which drive the above mentioned processes. Previous work conducted by the Environmental Biotechnology Group at Rhodes University indicated that the degradation of primary sewage sludge was enhanced under sulphate reducing conditions. This was proven in both laboratory and pilot-scale (Reciprocating Sludge Bed Reactor) systems, where the particulate matter accumulated in the sludge bed and the molecules in smaller flocs were rapidly solubilized. The current study was aimed at investigating in more detail the factors that govern the enhanced hydrolysis under sulphate reducing conditions, and to develop a descriptive model to explain the underlying mechanism involved. The solubilization of primary sewage sludge under sulphate reducing conditions was conducted in controlled flask studies and previously reported findings of enhanced hydrolysis were confirmed. The maximum percentage solubilization obtained in this study was 31% and 63% for the methanogenic and sulphidogenic systems respectively, and this was achieved over a period of 10 days. A rate of reducing sugar production and complex molecule breakdown of 51 mg. L⁻¹.hr⁻¹ and 167 mg.L⁻¹.hr⁻¹ was observed for the methanogenic and sulphidogenic systems respectively. The flask studies revealed that during hydrolysis of primary sewage sludge under sulphidogenic conditions there was enhanced production of soluble products, specifically carbohydrates (reducing sugars) and volatile fatty acids, compared to methanogenic conditions. The rate at which these products were utilized was also found to be more rapid under sulphidogenic as compared to methanogenic conditions. A study of the distribution of volatile fatty acids indicated that acetate was utilized preferentially in the methanogenic system, and that propionate, butyrate and valerate accumulated with time. The converse was found to occur in the sulphidogenic system. The descriptive model developed from the results of this study was based on the fact that a consortium of bacteria, composed of hydrolytic, acidogenic and acetogenic species, carries out the solubilization of complex carbon sources. Furthermore, it is essential that equilibrium between product formation and utilization is maintained, and that accumulation of soluble end products impacts negatively on the rate of the hydrolysis step. It is therefore proposed that the relatively poor utilization of VFA and reducing sugars in the methanogenic system activates a negative feedback inhibition on the hydrolytic and/ or acidogenic step. This inhibition is reduced in the sulphidogenic system where the utilization of end products is higher.
- Full Text:
- Date Issued: 2003
The role of cellulases and glucohydrolases in the solubilisation of primary sewage sludge
- Authors: Ngesi, Nosisa
- Date: 2002 , 2013-05-09
- Subjects: Sewage sludge , Sewage sludge digestion , Cellulase , Glucosidase inhibitors , Hydrolases , Sulfates
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4080 , http://hdl.handle.net/10962/d1007454 , Sewage sludge , Sewage sludge digestion , Cellulase , Glucosidase inhibitors , Hydrolases , Sulfates
- Description: Biological sulph ate reduction has been identi fied as a potentially valuable process for removing sulphate and heavy metals from indllstrial effluents. The role of sulphate reducing bacteria (SRB) in this process has attracted the attention of biotechnologists and recently of enzymologists due to its fundamental properties and possible role in AMD bioremediation. These obligatory anaerobic sulphate-reducing bacteria are commonly known to dissimilate sulphate for energy. Under anaerobic conditions SRB oxidize simple organic compounds such as lactic acid with the sulphate and thereby generate hydrogen sulphide (a stTong reducing agent) and bicarbonate ions. The hydrogen sulphide in turn reacts with contaminant metals contained in AMD and precipitates them out of solution as metal sulphides. Bicarbonate ions neutralize AMD by reaction with protons to form carbon dioxide and water. Organic matter in the municipal sewage sludge has been identified as a potential source of electron donors for su lphate reduction. However, this organic matter is in the polymeric form that cannot be util ised by SRB. The latter depend on the activities of other hydrolytic bacteria for the degradation of complex polymers. Hence the availability of these monomeric substrates is a major factor, which may constrain further process development and is considered a rate-limiting step. Thi s study is therefore undertaken to investigate the bacterial glucohydrolase enzymes involved in the digestion of the polysaccharides present in the sewage sludge with specific interest in cellulases and/or p-glucosidase enzymes. The goals of the research are to: isolate, identify, purify and quantify these enzymes; study their distribution with respect to time, pH, and temperature; maximize and quantify the hydrol ys is products; study whether sulphide and sulphate have an enhancing or an inhibitory effect on the activity of enzymes; optimize the enzyme activity against substrate and/or product inhibition and soluble heavy metal salts. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2002
- Authors: Ngesi, Nosisa
- Date: 2002 , 2013-05-09
- Subjects: Sewage sludge , Sewage sludge digestion , Cellulase , Glucosidase inhibitors , Hydrolases , Sulfates
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4080 , http://hdl.handle.net/10962/d1007454 , Sewage sludge , Sewage sludge digestion , Cellulase , Glucosidase inhibitors , Hydrolases , Sulfates
- Description: Biological sulph ate reduction has been identi fied as a potentially valuable process for removing sulphate and heavy metals from indllstrial effluents. The role of sulphate reducing bacteria (SRB) in this process has attracted the attention of biotechnologists and recently of enzymologists due to its fundamental properties and possible role in AMD bioremediation. These obligatory anaerobic sulphate-reducing bacteria are commonly known to dissimilate sulphate for energy. Under anaerobic conditions SRB oxidize simple organic compounds such as lactic acid with the sulphate and thereby generate hydrogen sulphide (a stTong reducing agent) and bicarbonate ions. The hydrogen sulphide in turn reacts with contaminant metals contained in AMD and precipitates them out of solution as metal sulphides. Bicarbonate ions neutralize AMD by reaction with protons to form carbon dioxide and water. Organic matter in the municipal sewage sludge has been identified as a potential source of electron donors for su lphate reduction. However, this organic matter is in the polymeric form that cannot be util ised by SRB. The latter depend on the activities of other hydrolytic bacteria for the degradation of complex polymers. Hence the availability of these monomeric substrates is a major factor, which may constrain further process development and is considered a rate-limiting step. Thi s study is therefore undertaken to investigate the bacterial glucohydrolase enzymes involved in the digestion of the polysaccharides present in the sewage sludge with specific interest in cellulases and/or p-glucosidase enzymes. The goals of the research are to: isolate, identify, purify and quantify these enzymes; study their distribution with respect to time, pH, and temperature; maximize and quantify the hydrol ys is products; study whether sulphide and sulphate have an enhancing or an inhibitory effect on the activity of enzymes; optimize the enzyme activity against substrate and/or product inhibition and soluble heavy metal salts. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2002
Enzymology of activated sewage sludge during anaerobic treatment of wastewaters : identification, characterisation, isolation and partial purification of proteases
- Tshivhunge, Azwiedziswi Sylvia
- Authors: Tshivhunge, Azwiedziswi Sylvia
- Date: 2001
- Subjects: Sewage sludge , Sewage sludge -- Environmental aspects , Sewage sludge digestion , Anaerobic bacteria
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4012 , http://hdl.handle.net/10962/d1004072 , Sewage sludge , Sewage sludge -- Environmental aspects , Sewage sludge digestion , Anaerobic bacteria
- Description: During anaerobic digestion bacteria inside the digester require a carbon source for their growth and metabolism, sewage sludge was used as a carbon source in this study. The COD content was used to measure the disappearance of the substrate. COD content was reduced by 48.3% and 49% in the methanogenic and sulphidogenic bioreactors, respectively, while sulphate concentration was reduced by 40%, producing 70mg/L of hydrogen sulphide as the end product over the first 5-7 days. Sulphate (which is used as a terminal electron acceptor of sulphur reducing bacteria) has little or no effect on the sulphidogenic and methanogenic proteases. Sulphite and sulphide (the intermediate and end product of sulphate reduction) increased protease activity by 20% and 40%-80%, respectively. Maximum protease activity occurred on day 21 in the methanogenic reactor and on day 9 in the sulphidogenic reactor. The absorbance, which indicates the level of amino acid increased to 2 and 9 for methanogenic and sulphidogenic bioreactors, respectively. Proteases that were active during anaerobic digestion were associated with the pellet (organic particulate matter) of the sewage. These enzymes have an optimum activity at pH 10 and at temperature of 50°C. The proteases that were active at pH 5 and 7, had optimum temperatures at 30°C and 60°C, respectively. Due to their association with organic particulate matter, these enzymes were stable at their optimum temperatures for at least five hours at their respective pH. Inhibition by PMSF, TPCK and 1.10-phenanthroline suggested that proteases inside the anaerobic digester are a mixture of cysteine, serine and metalloproteases. At pH 5, however, EDTA appeared to enhance protease activity by 368% (three-fold). Acetic acid decreased protease activity by 21%, while both propionic and butyric acid at 200 mg/L cause total inhibition of protease activity while these acids at higher pH (where they exist as their corresponding salts) exerted little effect. Copper, iron and zinc inhibited protease activity by 85% at pH 5 with concentrations ranging between 200 and 600 mg/L. On the other hand, nickel, showed an increase in protease activity of nearly 250%. At pH 7 and 10, copper had no effect on protease activity while iron, nickel and zinc inhibited these enzymes by 20-40%. Proteases at pH 7 were extracted from the pellet by sonication, releasing 50% of the total enzymes into the solution. The enzymes were precipitated by ammonium sulphate precipitation, and further purified by ion exchange chromatography and gel filtration. Ion exchange chromatography revealed that most of the enzymes that hydrolyse proteins are negatively charged while gel filtration showed that their molecular weight is approximately 500 kDa.
- Full Text:
- Date Issued: 2001
- Authors: Tshivhunge, Azwiedziswi Sylvia
- Date: 2001
- Subjects: Sewage sludge , Sewage sludge -- Environmental aspects , Sewage sludge digestion , Anaerobic bacteria
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4012 , http://hdl.handle.net/10962/d1004072 , Sewage sludge , Sewage sludge -- Environmental aspects , Sewage sludge digestion , Anaerobic bacteria
- Description: During anaerobic digestion bacteria inside the digester require a carbon source for their growth and metabolism, sewage sludge was used as a carbon source in this study. The COD content was used to measure the disappearance of the substrate. COD content was reduced by 48.3% and 49% in the methanogenic and sulphidogenic bioreactors, respectively, while sulphate concentration was reduced by 40%, producing 70mg/L of hydrogen sulphide as the end product over the first 5-7 days. Sulphate (which is used as a terminal electron acceptor of sulphur reducing bacteria) has little or no effect on the sulphidogenic and methanogenic proteases. Sulphite and sulphide (the intermediate and end product of sulphate reduction) increased protease activity by 20% and 40%-80%, respectively. Maximum protease activity occurred on day 21 in the methanogenic reactor and on day 9 in the sulphidogenic reactor. The absorbance, which indicates the level of amino acid increased to 2 and 9 for methanogenic and sulphidogenic bioreactors, respectively. Proteases that were active during anaerobic digestion were associated with the pellet (organic particulate matter) of the sewage. These enzymes have an optimum activity at pH 10 and at temperature of 50°C. The proteases that were active at pH 5 and 7, had optimum temperatures at 30°C and 60°C, respectively. Due to their association with organic particulate matter, these enzymes were stable at their optimum temperatures for at least five hours at their respective pH. Inhibition by PMSF, TPCK and 1.10-phenanthroline suggested that proteases inside the anaerobic digester are a mixture of cysteine, serine and metalloproteases. At pH 5, however, EDTA appeared to enhance protease activity by 368% (three-fold). Acetic acid decreased protease activity by 21%, while both propionic and butyric acid at 200 mg/L cause total inhibition of protease activity while these acids at higher pH (where they exist as their corresponding salts) exerted little effect. Copper, iron and zinc inhibited protease activity by 85% at pH 5 with concentrations ranging between 200 and 600 mg/L. On the other hand, nickel, showed an increase in protease activity of nearly 250%. At pH 7 and 10, copper had no effect on protease activity while iron, nickel and zinc inhibited these enzymes by 20-40%. Proteases at pH 7 were extracted from the pellet by sonication, releasing 50% of the total enzymes into the solution. The enzymes were precipitated by ammonium sulphate precipitation, and further purified by ion exchange chromatography and gel filtration. Ion exchange chromatography revealed that most of the enzymes that hydrolyse proteins are negatively charged while gel filtration showed that their molecular weight is approximately 500 kDa.
- Full Text:
- Date Issued: 2001
Sulphate reduction utilizing hydrolysis of complex carbon sources
- Authors: Molipane, Ntaoleng Patricia
- Date: 1999
- Subjects: Sewage sludge , Acid mine drainage , Hydrolysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4000 , http://hdl.handle.net/10962/d1004060 , Sewage sludge , Acid mine drainage , Hydrolysis
- Description: Due to environmental pollution caused by acid mine drainage (AMD), the Department of Water Affairs has developed a National Water Bill for managing and controlling the water environment to prevent AMD pollution. The application of sulphate reducing bacteria have been demonstrated for the treatment of AMD. However, the scale-up application of this technology ultimately depends on the cost and availability of a carbon source. This study evaluated the use of sewage sludge to provide a carbon source for sulphate reduction in synthetic drainage wastewaters. The demonstration of this process in a laboratory-scale reactor proved that sewage sludge could provide a useful model and viable carbon source for evaluation of sulphate reduction as a process for treating AMD. Since sewage sludge is a complex carbon source, hydrolysis reactions controlling the anaerobic digestion of particulate substrate from this medium were optimized by evaluating the effect of pH on hydrolysis. Controlled and uncontrolled pH studies were conducted using a three stage mixed anaerobic reactor. Analysis of the degradation behaviour of the three important organic classes (carbohydrate, proteins and lipids) revealed that each class followed an indvidual trend with respect to pH changes. In addition, the solubilization of organic particulate carbon was also shown to be a function of pH. The hydrolysis pattern of organic substrate and COD solublization was induced at pH 6.5 rather than at high pH values (7.5 and 8.5). The biodegradation activity of sewage sludge was characterized by the API-ZYM1N test system to provide rapid semiquantitative information on the activity of hydrolytic enzymes associated with the degradation of carbohydrates, lipids, proteins and nucleic acids. A wide range of enzyme activities with phosphatases, aminopeptidases, and glucosyl hydralases dominating were displayed. The pattern of substrate hydrolysis correlated to the degradation efficiency of each organic class as a function of pH. The evaluation of scale-up application for sulphate reduction utilizing sewage sludge as a carbon source demonstrated that large water volume flows could possibly be treated with this cost-effective technology. Generation of alkalinity and sulphide in this medium was shown to be successful in the removal of heavy metals by precipitation. The use of this technology coupled to reduced cost involved showed that biological sulphate reduction utilizing hydrolysates of complex organic particulate from sewage sludge ss a carbon source has a potential scale-up application for the treatment of AMD.
- Full Text:
- Date Issued: 1999
- Authors: Molipane, Ntaoleng Patricia
- Date: 1999
- Subjects: Sewage sludge , Acid mine drainage , Hydrolysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4000 , http://hdl.handle.net/10962/d1004060 , Sewage sludge , Acid mine drainage , Hydrolysis
- Description: Due to environmental pollution caused by acid mine drainage (AMD), the Department of Water Affairs has developed a National Water Bill for managing and controlling the water environment to prevent AMD pollution. The application of sulphate reducing bacteria have been demonstrated for the treatment of AMD. However, the scale-up application of this technology ultimately depends on the cost and availability of a carbon source. This study evaluated the use of sewage sludge to provide a carbon source for sulphate reduction in synthetic drainage wastewaters. The demonstration of this process in a laboratory-scale reactor proved that sewage sludge could provide a useful model and viable carbon source for evaluation of sulphate reduction as a process for treating AMD. Since sewage sludge is a complex carbon source, hydrolysis reactions controlling the anaerobic digestion of particulate substrate from this medium were optimized by evaluating the effect of pH on hydrolysis. Controlled and uncontrolled pH studies were conducted using a three stage mixed anaerobic reactor. Analysis of the degradation behaviour of the three important organic classes (carbohydrate, proteins and lipids) revealed that each class followed an indvidual trend with respect to pH changes. In addition, the solubilization of organic particulate carbon was also shown to be a function of pH. The hydrolysis pattern of organic substrate and COD solublization was induced at pH 6.5 rather than at high pH values (7.5 and 8.5). The biodegradation activity of sewage sludge was characterized by the API-ZYM1N test system to provide rapid semiquantitative information on the activity of hydrolytic enzymes associated with the degradation of carbohydrates, lipids, proteins and nucleic acids. A wide range of enzyme activities with phosphatases, aminopeptidases, and glucosyl hydralases dominating were displayed. The pattern of substrate hydrolysis correlated to the degradation efficiency of each organic class as a function of pH. The evaluation of scale-up application for sulphate reduction utilizing sewage sludge as a carbon source demonstrated that large water volume flows could possibly be treated with this cost-effective technology. Generation of alkalinity and sulphide in this medium was shown to be successful in the removal of heavy metals by precipitation. The use of this technology coupled to reduced cost involved showed that biological sulphate reduction utilizing hydrolysates of complex organic particulate from sewage sludge ss a carbon source has a potential scale-up application for the treatment of AMD.
- Full Text:
- Date Issued: 1999
- «
- ‹
- 1
- ›
- »