A theoretical investigation of the effects of solar eclipses on the ionosphere
- Walker, Anthony David Mortimer
- Authors: Walker, Anthony David Mortimer
- Date: 1962
- Subjects: Solar eclipses , Ionosphere , Solar activity
- Language: English
- Type: Thesis , MSc , Masters
- Identifier: vital:5550 , http://hdl.handle.net/10962/d1013467
- Description: The behaviour of the ionosphere during a solar eclipse is of great interest because radiation from the sun is the cause of ionization in the upper atmosphere and it is useful to be able to conduct experiments where this radiation is cut off and restored in a known manner. Experimental results, especially those dealing with the F2 layer, have proved puzzling. Cusps which cannot be explained appear on the records obtained from ionosphere sounders and in the F2 region the electron density at a given height shows a maximum after the eclipse where one would expect it simply to rise to a steady value. An attempt is made in this thesis to explain some of the anomalies in terms of tilts in the ionospheric layers and minima of electron density or "valleys" between the ionospheric layers. The problem is attacked theoretically. Part I deals with the theoretical background to ionospheric physics in general and to this problem in particular. Standard methods of dealing with radio propagation in the ionosphere as well as some methods developed by the author are discussed. Part II deals directly with the effects of a solar eclipse on a theoretical ionosphere. Ionograms which would be obtained in the theoretical ionosphere are constructed. These are scaled by standard methods to show where errors may arise . It appears that tilts in the layers have only a small effect. The effect of the valley is, however, extremely important, giving rise to the apparent maximum of electron density in the F2 layer at a given height after the eclipse. This maximum does not in fact exist but arises from an error in the scaling method which ignores the possibility of a valley. Some records taken during the solar eclipse of 25 December, 1954 have been scaled. They support the conclusion reached theoretically.
- Full Text:
- Date Issued: 1962
- Authors: Walker, Anthony David Mortimer
- Date: 1962
- Subjects: Solar eclipses , Ionosphere , Solar activity
- Language: English
- Type: Thesis , MSc , Masters
- Identifier: vital:5550 , http://hdl.handle.net/10962/d1013467
- Description: The behaviour of the ionosphere during a solar eclipse is of great interest because radiation from the sun is the cause of ionization in the upper atmosphere and it is useful to be able to conduct experiments where this radiation is cut off and restored in a known manner. Experimental results, especially those dealing with the F2 layer, have proved puzzling. Cusps which cannot be explained appear on the records obtained from ionosphere sounders and in the F2 region the electron density at a given height shows a maximum after the eclipse where one would expect it simply to rise to a steady value. An attempt is made in this thesis to explain some of the anomalies in terms of tilts in the ionospheric layers and minima of electron density or "valleys" between the ionospheric layers. The problem is attacked theoretically. Part I deals with the theoretical background to ionospheric physics in general and to this problem in particular. Standard methods of dealing with radio propagation in the ionosphere as well as some methods developed by the author are discussed. Part II deals directly with the effects of a solar eclipse on a theoretical ionosphere. Ionograms which would be obtained in the theoretical ionosphere are constructed. These are scaled by standard methods to show where errors may arise . It appears that tilts in the layers have only a small effect. The effect of the valley is, however, extremely important, giving rise to the apparent maximum of electron density in the F2 layer at a given height after the eclipse. This maximum does not in fact exist but arises from an error in the scaling method which ignores the possibility of a valley. Some records taken during the solar eclipse of 25 December, 1954 have been scaled. They support the conclusion reached theoretically.
- Full Text:
- Date Issued: 1962
Ionospheric studies of the solar eclipse 25 December, 1954
- Authors: McElhinny, M W
- Date: 1959
- Subjects: Ionosphere -- Research , Solar eclipses
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5531 , http://hdl.handle.net/10962/d1012869
- Description: Since the Kennelly- Heaviside hypothesis in 1902 of the existence of a partially conducting layer in the upper atmosphere was proved to be true by the experiments of APPLETON and BARNETT (1925) and BREIT and TUVE (1926), this region has become known as the ionosphere. The ionosphere was soon discovered to consist of, not one but several layers (Fig. 1) (i) A layer at a height of just over 100 km. called the E layer. (ii) A layer at a height of approximately 300km. called the F₂ layer. (iii) A layer at a height of approximately 200 km. called the F₁ layer; this layer differs from the other two in that it is only present during the day time in Summer. (iv) Occasional intense reflections from a height of about 100 km. are found - these cannot be attributed to the normal E layer and have received the name "Sporadic E". The presence of two E layers (E₁ and E₂) has been suggested by HALLIDAY (1936) and BEST and RATCLIFFE (l978) but until recently most workers still seem to attribute these reflections to Sporadic E. Recent measurement by rockets of the electron density at E layer heights still do not confirm whether such bifurcation exists in the E region. The diurnal and seasonal variations of the first three layers indicate that the sun is the chief agent in their production. It is generally agreed that these layers consist of ionised molecules or atoms and free electrons produced by radiation from the sun. The origin of Sporadic E ionisation is still obscure, but it is thought that these sudden increases in ionisation which occur in E layer heights are due to passing meteors. Recently it has also been suggested by SEDDON, PICKAR and JACKSON (1954) from rocket measurements that Sporadic E might be due to a steep electron density gradient above the B layer.
- Full Text:
- Date Issued: 1959
- Authors: McElhinny, M W
- Date: 1959
- Subjects: Ionosphere -- Research , Solar eclipses
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5531 , http://hdl.handle.net/10962/d1012869
- Description: Since the Kennelly- Heaviside hypothesis in 1902 of the existence of a partially conducting layer in the upper atmosphere was proved to be true by the experiments of APPLETON and BARNETT (1925) and BREIT and TUVE (1926), this region has become known as the ionosphere. The ionosphere was soon discovered to consist of, not one but several layers (Fig. 1) (i) A layer at a height of just over 100 km. called the E layer. (ii) A layer at a height of approximately 300km. called the F₂ layer. (iii) A layer at a height of approximately 200 km. called the F₁ layer; this layer differs from the other two in that it is only present during the day time in Summer. (iv) Occasional intense reflections from a height of about 100 km. are found - these cannot be attributed to the normal E layer and have received the name "Sporadic E". The presence of two E layers (E₁ and E₂) has been suggested by HALLIDAY (1936) and BEST and RATCLIFFE (l978) but until recently most workers still seem to attribute these reflections to Sporadic E. Recent measurement by rockets of the electron density at E layer heights still do not confirm whether such bifurcation exists in the E region. The diurnal and seasonal variations of the first three layers indicate that the sun is the chief agent in their production. It is generally agreed that these layers consist of ionised molecules or atoms and free electrons produced by radiation from the sun. The origin of Sporadic E ionisation is still obscure, but it is thought that these sudden increases in ionisation which occur in E layer heights are due to passing meteors. Recently it has also been suggested by SEDDON, PICKAR and JACKSON (1954) from rocket measurements that Sporadic E might be due to a steep electron density gradient above the B layer.
- Full Text:
- Date Issued: 1959
- «
- ‹
- 1
- ›
- »