The cryopreservation potential and ultrastructure of Agulhas sole Austroglossus pectoralis spermatozoa
- Authors: Markovina, Michael Zeljan
- Date: 2008
- Subjects: Spermatozoa , Spermatozoa -- Cryopreservation , Aquaculture , Fishes -- Breeding , Soleidae , Flatfishes , Agulhas Current (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5251 , http://hdl.handle.net/10962/d1005094 , Spermatozoa , Spermatozoa -- Cryopreservation , Aquaculture , Fishes -- Breeding , Soleidae , Flatfishes , Agulhas Current (South Africa)
- Description: As the estimated market demand for the Agulhas sole Austroglossus pectoralis exceeds the annual catch from trawlers, this species is a potential aquaculture candidate. Broodstock conditioning and gamete preservation is part of research and development aiming at establishing a breeding protocol for a new aquaculture species. Based on a literature review of the morphology of pleuronectiform spermatozoa, this study was designed firstly, to contribute to the field of spermatozoan morphology by describing the ultrastructure of A. pectoralis spermatozoa. This was followed by an experiment to cryopreserve mature spermatozoa to provide baseline data for future studies on this and related species. The testis of A. pectoralis was a paired structure encased in a membrane, the tunica albuginea. The primary testis was located on the dorsal surface of the rib cage and the secondary testis on the ventral side. The testis was of an unrestricted spermatogonial type, based upon observations of spermatogonia along the entire length of the lobule. Mature spermatozoa of A. pectoralis had an acrosome-free ovoid head 1.68 ± 1.6μm in length and 1.7 ± 1.6μm in diameter, a short mid-piece of 0.5 ± 0.1μm in length, containing 7 irregularly shaped mitochondria forming a ring-like structure at the base of the nucleus. The flagellae were 47.4 ± 4.8μm in length, most with two plasma membrane lateral fin-like projections. However, some flagellae had either zero or three lateral fin projections. Cross-sections of the flagellae showed an axenome with a 9+2 microtubule configuration. The proximal and distal centriols were coaxal, situated deep within the nuclear fossa. The structure of A. pectoralis spermatozoa conformed to the type 1 ect-aquasperm, also found in externally fertilizing species. This type has been suggested to be the plesiomorphic form in Neopterigians. Finally, this study contributed to a cryopreservation protocol for A. pectoralis spermatozoa by testing the two cryoprotectants dimethyl sulphoxide (DMSO) and glycerol. Glycerol, at a concentration of 10%, offered better cryoprotection than DMSO. This was established using flow cytometry analysis of post-thaw nuclear membrane integrity after 64 days of storage in liquid nitrogen. The toxicity of DMSO to isolated cellular proteins may have resulted in DMSO-treated sperm having the highest percent (35.2% ± 3.2%) of non-viable cells compared with 23.0% ± 2.5% and 27.8% ± 3.4% for glycerol and the control, respectively. The presence of sucrose in the Modified Mounib Medium extender solution may explain why 45.5% ± 5% of the sperm cells were potentially viable in the control treatment. Initially, the white margined sole Dagatichthys marginatus (Soleidae) was selected as the most suitable candidate for flatfish aquaculture in South Africa. Thus, the aim of this study was to investigate the cryogenic potential and ultrastructure of D. marginatus spermatozoa. However, due to a skewed sex ratio, there were not enough males available to study this species. A skewed sex ratio is common amongst soleids, thus, the need to develop effective cryopreservation methods and to develop an understanding of sperm morphology so that the best time for cryopreservation can be chosen. In conclusion, this first description of spermatozan morphology of A. pectoralis contributed to our understanding of soleid sperm ultrastructure. In addition, a comparison of testis appearance between fish sampled just prior to spawning season and fish with mature sperm provided information on the spawning season of this species. The findings from the cryopreservation experiment suggested that glycerol was a feasible cryoprotectant for this species when sperm was prepared under field conditions.
- Full Text:
- Date Issued: 2008
- Authors: Markovina, Michael Zeljan
- Date: 2008
- Subjects: Spermatozoa , Spermatozoa -- Cryopreservation , Aquaculture , Fishes -- Breeding , Soleidae , Flatfishes , Agulhas Current (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5251 , http://hdl.handle.net/10962/d1005094 , Spermatozoa , Spermatozoa -- Cryopreservation , Aquaculture , Fishes -- Breeding , Soleidae , Flatfishes , Agulhas Current (South Africa)
- Description: As the estimated market demand for the Agulhas sole Austroglossus pectoralis exceeds the annual catch from trawlers, this species is a potential aquaculture candidate. Broodstock conditioning and gamete preservation is part of research and development aiming at establishing a breeding protocol for a new aquaculture species. Based on a literature review of the morphology of pleuronectiform spermatozoa, this study was designed firstly, to contribute to the field of spermatozoan morphology by describing the ultrastructure of A. pectoralis spermatozoa. This was followed by an experiment to cryopreserve mature spermatozoa to provide baseline data for future studies on this and related species. The testis of A. pectoralis was a paired structure encased in a membrane, the tunica albuginea. The primary testis was located on the dorsal surface of the rib cage and the secondary testis on the ventral side. The testis was of an unrestricted spermatogonial type, based upon observations of spermatogonia along the entire length of the lobule. Mature spermatozoa of A. pectoralis had an acrosome-free ovoid head 1.68 ± 1.6μm in length and 1.7 ± 1.6μm in diameter, a short mid-piece of 0.5 ± 0.1μm in length, containing 7 irregularly shaped mitochondria forming a ring-like structure at the base of the nucleus. The flagellae were 47.4 ± 4.8μm in length, most with two plasma membrane lateral fin-like projections. However, some flagellae had either zero or three lateral fin projections. Cross-sections of the flagellae showed an axenome with a 9+2 microtubule configuration. The proximal and distal centriols were coaxal, situated deep within the nuclear fossa. The structure of A. pectoralis spermatozoa conformed to the type 1 ect-aquasperm, also found in externally fertilizing species. This type has been suggested to be the plesiomorphic form in Neopterigians. Finally, this study contributed to a cryopreservation protocol for A. pectoralis spermatozoa by testing the two cryoprotectants dimethyl sulphoxide (DMSO) and glycerol. Glycerol, at a concentration of 10%, offered better cryoprotection than DMSO. This was established using flow cytometry analysis of post-thaw nuclear membrane integrity after 64 days of storage in liquid nitrogen. The toxicity of DMSO to isolated cellular proteins may have resulted in DMSO-treated sperm having the highest percent (35.2% ± 3.2%) of non-viable cells compared with 23.0% ± 2.5% and 27.8% ± 3.4% for glycerol and the control, respectively. The presence of sucrose in the Modified Mounib Medium extender solution may explain why 45.5% ± 5% of the sperm cells were potentially viable in the control treatment. Initially, the white margined sole Dagatichthys marginatus (Soleidae) was selected as the most suitable candidate for flatfish aquaculture in South Africa. Thus, the aim of this study was to investigate the cryogenic potential and ultrastructure of D. marginatus spermatozoa. However, due to a skewed sex ratio, there were not enough males available to study this species. A skewed sex ratio is common amongst soleids, thus, the need to develop effective cryopreservation methods and to develop an understanding of sperm morphology so that the best time for cryopreservation can be chosen. In conclusion, this first description of spermatozan morphology of A. pectoralis contributed to our understanding of soleid sperm ultrastructure. In addition, a comparison of testis appearance between fish sampled just prior to spawning season and fish with mature sperm provided information on the spawning season of this species. The findings from the cryopreservation experiment suggested that glycerol was a feasible cryoprotectant for this species when sperm was prepared under field conditions.
- Full Text:
- Date Issued: 2008
The effects of melatonin on the testis, epididymis and sperm physiology of the Wistar rat
- Authors: Gwayi, Noluzuko
- Date: 2001
- Subjects: Rats as laboratory animals , Rats -- physiology , Spermatozoa , Melatonin , Testis , Epididymis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5681 , http://hdl.handle.net/10962/d1005366 , Rats as laboratory animals , Rats -- physiology , Spermatozoa , Melatonin , Testis , Epididymis
- Description: Melatonin is a product of the pineal gland and is postulated to play an antigonadotropic role in the reproductive system of mammals. The reproductive system of non-seasonally breeding mammals is believed to be not as responsive to melatonin treatment as that of seasonally breeding mammals. Recently, there has been increasing support from in vivo and in vitro studies, for the hypothesis that melatonin has negative effects on sperm physiology, especially on sperm motility. High and/or low seminal concentrations of melatonin have been associated with abnormalities in human sperm motility and concentration. In this study, I examined the effects of melatonin on the testis, epididymis and sperm physiology, using in vivo and in vitro experiments, in a non-seasonally breeding mammal. Treatment, in vivo, with exogenous melatonin for six weeks did not inhibit testosterone production or spermatogenesis, nor did it affect the mass of the testes and epididymides at dissection, the concentration the morphology of speimatozoa. However, melatonin in vivo had a small, but significant negative effect on sperm motility and sperm motility index. In vitro incubation of spermatozoa Fith melatonin reduced the percentage (%) of forward progressive movement (fpm), increased the % reduction in fpm, reduced the vigor or quality of sperm motility, reduced the sperm motility index, and delayed and/or prolonged the transition of one pattern of sperm motility to the subsequent patterns. Melatonin increased the pH of the culture medium, and the increased pH, and the ethanol utilized as a solvent for melatonin, both negatively affected all the sperm motility parameters that were assessed in my study. The effects of ethanol increased with time, and the effects of pH increased with both time and increasing pH. Melatonin in vitro did not inhibit capacitation and the acrosome reaction, but it delayed the onset and the progression of capacitation and the acrosome reaction. These results suggest that while melatonin did not inhibit spermatogenesis in the Wistar rat, it may influence sperm motility. Therefore, the presence of high concentrations of melatonin in the reproductive fluids may inhibit sperm motility. With further detailed research, melatonin may have a potential use as a contraceptive drug.
- Full Text:
- Date Issued: 2001
- Authors: Gwayi, Noluzuko
- Date: 2001
- Subjects: Rats as laboratory animals , Rats -- physiology , Spermatozoa , Melatonin , Testis , Epididymis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5681 , http://hdl.handle.net/10962/d1005366 , Rats as laboratory animals , Rats -- physiology , Spermatozoa , Melatonin , Testis , Epididymis
- Description: Melatonin is a product of the pineal gland and is postulated to play an antigonadotropic role in the reproductive system of mammals. The reproductive system of non-seasonally breeding mammals is believed to be not as responsive to melatonin treatment as that of seasonally breeding mammals. Recently, there has been increasing support from in vivo and in vitro studies, for the hypothesis that melatonin has negative effects on sperm physiology, especially on sperm motility. High and/or low seminal concentrations of melatonin have been associated with abnormalities in human sperm motility and concentration. In this study, I examined the effects of melatonin on the testis, epididymis and sperm physiology, using in vivo and in vitro experiments, in a non-seasonally breeding mammal. Treatment, in vivo, with exogenous melatonin for six weeks did not inhibit testosterone production or spermatogenesis, nor did it affect the mass of the testes and epididymides at dissection, the concentration the morphology of speimatozoa. However, melatonin in vivo had a small, but significant negative effect on sperm motility and sperm motility index. In vitro incubation of spermatozoa Fith melatonin reduced the percentage (%) of forward progressive movement (fpm), increased the % reduction in fpm, reduced the vigor or quality of sperm motility, reduced the sperm motility index, and delayed and/or prolonged the transition of one pattern of sperm motility to the subsequent patterns. Melatonin increased the pH of the culture medium, and the increased pH, and the ethanol utilized as a solvent for melatonin, both negatively affected all the sperm motility parameters that were assessed in my study. The effects of ethanol increased with time, and the effects of pH increased with both time and increasing pH. Melatonin in vitro did not inhibit capacitation and the acrosome reaction, but it delayed the onset and the progression of capacitation and the acrosome reaction. These results suggest that while melatonin did not inhibit spermatogenesis in the Wistar rat, it may influence sperm motility. Therefore, the presence of high concentrations of melatonin in the reproductive fluids may inhibit sperm motility. With further detailed research, melatonin may have a potential use as a contraceptive drug.
- Full Text:
- Date Issued: 2001
- «
- ‹
- 1
- ›
- »