Arbuscular mycorrhizal fungi as a bio-indicator of soil health under agricultural management practices in South Africa
- Authors: Sekgota, Wendy Maphefo
- Date: 2019
- Subjects: Soils -- Quality -- South Africa , Soil fertility -- South Africa , Fungi in agriculture -- South Africa , Mycorrhizal fungi , Vesicular-arbuscular mycorrhizas , Fungi -- Spores , Soils -- Agricultural chemical content
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/72161 , vital:30011
- Description: This study investigated the activity of arbuscular mycorrhizal (AM) fungi as a potential biological indicator of soil health under conventional and conservation agricultural management in South Africa. An experimental trial consisting of three replicates plots under conventional and reduced tillage subdivided into twelve treatments of six crops and two fertilizer inputs was assessed over four growing seasons for various AM fungal parameters such as spore density, most probable number (MPN) of propagules percentage root colonisation and easily extractable glomalin (EEG). Cropping combinations were maize monoculture; maize soybean rotation; maize cowpea rotation; maize cowpea intercropping; maize oats intercropping and maize vetch intercropping. Resident AM fungal spore numbers and EEG protein levels were very low and no root colonization was recorded in the first two growing seasons. These findings prompted the need for the inoculation of the study site in the third growing season with a commercial AM fungal product (MycorootTM). Spore numbers, EEG concentrations and percentage root colonisation increased 8 weeks after inoculation but were significantly reduced in the fourth growing season that was not inoculated. MPN infectivity increased with inoculation particularly under conventional tillage and maize monoculture. Resident spore taxa were morphologically identified into three genera Gigaspora, Scutellospora, and Glomus. For the first two growing seasons, the maize roots were heavily colonized by a pathogenic fungus after mycorrhizal inoculation no evidence of pathogenic fungi was observed. In the fourth growing season which did not receive inoculation, root colonization started to decline. Reduced tillage, high fertilizer input combined with maize cowpea rotation (MC) and maize hairy vetch intercropping (Mv) had a significant effect (P = 0.01) on AM fungal spore numbers. Cropping systems and high fertilizer input had a significant effect on EEG concentrations in the second growing season. Overall, fertilizer application and crop type had implications for mycorrhizal activity. The soil health status in this study site was deemed low as measured by the impaired mycorrhizal activity due to agricultural management practices. Field inoculation combined with classical and molecular tools could provide a more realistic assessment of the effect of agricultural management practices on AM fungi as potential bioindicators of soil health. Therefore, AM fungi could be used as bioindicators of soil health under agricultural management practices in South African soil conditions.
- Full Text:
- Date Issued: 2019
- Authors: Sekgota, Wendy Maphefo
- Date: 2019
- Subjects: Soils -- Quality -- South Africa , Soil fertility -- South Africa , Fungi in agriculture -- South Africa , Mycorrhizal fungi , Vesicular-arbuscular mycorrhizas , Fungi -- Spores , Soils -- Agricultural chemical content
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/72161 , vital:30011
- Description: This study investigated the activity of arbuscular mycorrhizal (AM) fungi as a potential biological indicator of soil health under conventional and conservation agricultural management in South Africa. An experimental trial consisting of three replicates plots under conventional and reduced tillage subdivided into twelve treatments of six crops and two fertilizer inputs was assessed over four growing seasons for various AM fungal parameters such as spore density, most probable number (MPN) of propagules percentage root colonisation and easily extractable glomalin (EEG). Cropping combinations were maize monoculture; maize soybean rotation; maize cowpea rotation; maize cowpea intercropping; maize oats intercropping and maize vetch intercropping. Resident AM fungal spore numbers and EEG protein levels were very low and no root colonization was recorded in the first two growing seasons. These findings prompted the need for the inoculation of the study site in the third growing season with a commercial AM fungal product (MycorootTM). Spore numbers, EEG concentrations and percentage root colonisation increased 8 weeks after inoculation but were significantly reduced in the fourth growing season that was not inoculated. MPN infectivity increased with inoculation particularly under conventional tillage and maize monoculture. Resident spore taxa were morphologically identified into three genera Gigaspora, Scutellospora, and Glomus. For the first two growing seasons, the maize roots were heavily colonized by a pathogenic fungus after mycorrhizal inoculation no evidence of pathogenic fungi was observed. In the fourth growing season which did not receive inoculation, root colonization started to decline. Reduced tillage, high fertilizer input combined with maize cowpea rotation (MC) and maize hairy vetch intercropping (Mv) had a significant effect (P = 0.01) on AM fungal spore numbers. Cropping systems and high fertilizer input had a significant effect on EEG concentrations in the second growing season. Overall, fertilizer application and crop type had implications for mycorrhizal activity. The soil health status in this study site was deemed low as measured by the impaired mycorrhizal activity due to agricultural management practices. Field inoculation combined with classical and molecular tools could provide a more realistic assessment of the effect of agricultural management practices on AM fungi as potential bioindicators of soil health. Therefore, AM fungi could be used as bioindicators of soil health under agricultural management practices in South African soil conditions.
- Full Text:
- Date Issued: 2019
Vachellia erioloba (camel thorn) and microbial interactions
- Authors: Van Aswegen, Sunet
- Date: 2018
- Subjects: Vesicular-arbuscular mycorrhizas , Cadmium , Rhizobacteria , Plant growth-promoting rhizobacteria , Acacia erioloba
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/63716 , vital:28475
- Description: Vachellia erioloba (camel thorn) is one of South Africa’s economically important tree species and therefore requires further investigation to improve its health and growth. Beneficial soil microbes have positive effects on plants through various mechanisms such as nitrogen fixation, phosphate solubilisation, indole acetic acid and siderophore production and biofilm formation. These traits enhance plant growth and protect the host plant against parasitic organisms that are present in soil. The arbuscular mycorrhizal (AM) fungi are well known for their beneficial symbiotic effects on host plants. The objective of this study was to determine the role of AM fungi and associated beneficial rhizobacteria in improving the growth of V. erioloba seedlings. Soil and root samples were collected from a farm in the Northern Cape, South Africa. Fifty-seven bacterial cultures were isolated from the soil and tested for plant growth promoting characteristics. Fourteen isolates showing at least four beneficial traits were molecularly identified using the GenBank database. The AM fungal and bacterial populations in the soil samples were assessed using Illumina sequencing. Sequences were identified using the MaarJAM and GenBank databases, respectively. Three separate pot trials were conducted to determine; 1) the effects of cadmium (Cd) on seedling growth; 2) the individual effects of three selected bacterial isolates and AM fungi alone and combined on seedling growth, and 3) the combined effects of the selected bacteria on AM fungal inoculated and uninoculated seedlings. Of the fourteen isolates the Enterobacter genera was the dominant species identified, with Acinetobacter, Pantoea and Bacillus each having one isolate. All were described as plant growth promoting rhizobacteria. One isolate from each genus, excluding Pantoea, was used in the pot trials. Three genera were identified in the AM fungal population that was assessed, namely Ambispora, Paraglomus and Glomus with Ambispora being the dominant genus. The bacterial population assessed showed a high diversity of bacteria from the Actinobacteria phylum being the dominant group. The results of the heavy metal pot trial showed that the symbiotic relationship between the seedlings and AM fungi increased the seedlings’ health and growth during heavy metal stress. The combination of bacteria and AM fungi increased growth parameters in all the inoculated seedlings, but not when compared to uninoculated seedlings indicating a possible competition for nutrients. The results were influenced by the presence of a nematode, which was suspected to have been seed borne. Further investigations on these interactions are required. Inoculation of AM fungi and selected PGPR is recommended for V. erioloba seedling production. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Van Aswegen, Sunet
- Date: 2018
- Subjects: Vesicular-arbuscular mycorrhizas , Cadmium , Rhizobacteria , Plant growth-promoting rhizobacteria , Acacia erioloba
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/63716 , vital:28475
- Description: Vachellia erioloba (camel thorn) is one of South Africa’s economically important tree species and therefore requires further investigation to improve its health and growth. Beneficial soil microbes have positive effects on plants through various mechanisms such as nitrogen fixation, phosphate solubilisation, indole acetic acid and siderophore production and biofilm formation. These traits enhance plant growth and protect the host plant against parasitic organisms that are present in soil. The arbuscular mycorrhizal (AM) fungi are well known for their beneficial symbiotic effects on host plants. The objective of this study was to determine the role of AM fungi and associated beneficial rhizobacteria in improving the growth of V. erioloba seedlings. Soil and root samples were collected from a farm in the Northern Cape, South Africa. Fifty-seven bacterial cultures were isolated from the soil and tested for plant growth promoting characteristics. Fourteen isolates showing at least four beneficial traits were molecularly identified using the GenBank database. The AM fungal and bacterial populations in the soil samples were assessed using Illumina sequencing. Sequences were identified using the MaarJAM and GenBank databases, respectively. Three separate pot trials were conducted to determine; 1) the effects of cadmium (Cd) on seedling growth; 2) the individual effects of three selected bacterial isolates and AM fungi alone and combined on seedling growth, and 3) the combined effects of the selected bacteria on AM fungal inoculated and uninoculated seedlings. Of the fourteen isolates the Enterobacter genera was the dominant species identified, with Acinetobacter, Pantoea and Bacillus each having one isolate. All were described as plant growth promoting rhizobacteria. One isolate from each genus, excluding Pantoea, was used in the pot trials. Three genera were identified in the AM fungal population that was assessed, namely Ambispora, Paraglomus and Glomus with Ambispora being the dominant genus. The bacterial population assessed showed a high diversity of bacteria from the Actinobacteria phylum being the dominant group. The results of the heavy metal pot trial showed that the symbiotic relationship between the seedlings and AM fungi increased the seedlings’ health and growth during heavy metal stress. The combination of bacteria and AM fungi increased growth parameters in all the inoculated seedlings, but not when compared to uninoculated seedlings indicating a possible competition for nutrients. The results were influenced by the presence of a nematode, which was suspected to have been seed borne. Further investigations on these interactions are required. Inoculation of AM fungi and selected PGPR is recommended for V. erioloba seedling production. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
Assessing the potential role of microorganisms in the production of seedlings for the restoration of Albany Thicket
- Authors: Mpama, Nelisa
- Date: 2017
- Subjects: Vesicular-arbuscular mycorrhizas , Rhizobacteria , Restoration ecology South Africa Albany , Microorganisms
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/64555 , vital:28558
- Description: The role of microorganisms in restoration of the Albany Thicket has not been well documented, although the benefits to plants of these various interactions has been well documented. Microorganisms are chief ecological engineers and assist in resolving environmental problems and act to restore degraded ecosystem function by forming mutual relationships with the roots of the plants. The aim of this study was to assess the potential of microorganisms for the improved biomass production of selected woody and succulent seedlings used in mesic thicket restoration. Three tree species were selected for propagation in this study namely; Mystroxylon aethiopicum Scutia myrtina and Aloe ferox. Soil samples were collected from a degraded and intact thicket site from Bathurst, South Africa. Soils were evaluated for number of arbuscular mycorrhizal (AM) spores, mycorrhizal infectivity potential and nutrient availability both before and after seedling propagation. Pasteurized soil from the degraded site was used in a pot trial. Ten replicates seedling for plant species were planted and subjected to four treatments which included inoculation with AM fungi and the rhizobacterium, Enterobacter sp., alone and in combination; the fourth treatment was an un-inouclated control. Plant growth parameters were recorded at regular intervals where appropriate and seedlings were harvested after 24 weeks for biomass measurements and AM colonisation assessments. Although generally low (< 1 spore per gram) the density of AM fungal spores was significantly higher in soils from the intact site when compared with soils from the degraded site. The mycorrhizal potential of the soils was however not significantly different. Mystroxylon aethiopicum seedling shoot height, canopy diameter and shoot biomass showed a significant increase when inoculated with AM fungi while S. myrtina seedlings showed increased shoot height when inoculated with both AM fungi and Enterobacter sp. Aloe ferox seedlings did not respond to microbial inoculation. The concentration of soil P and Na increased in treatments with Enterobacter sp. alone and in combination with AM fungi. Mystroxylon aethiopicum and S. myrtina seedlings showed a dependency on microbial inoculants indicating the importance of inoculation in the nursery before planting out into the field. Overall AM fungal inoculants applied to seedlings can be used to compensate for nutrient deficiency in soils. Although the Enterobacter isolate used was known to have various plant growth promoting capabilities. It is recommended that other rhizobacterial isolates be investigated. , Thesis (MSc) -- Faculty of Science, Environmental Science, 2017
- Full Text:
- Date Issued: 2017
- Authors: Mpama, Nelisa
- Date: 2017
- Subjects: Vesicular-arbuscular mycorrhizas , Rhizobacteria , Restoration ecology South Africa Albany , Microorganisms
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/64555 , vital:28558
- Description: The role of microorganisms in restoration of the Albany Thicket has not been well documented, although the benefits to plants of these various interactions has been well documented. Microorganisms are chief ecological engineers and assist in resolving environmental problems and act to restore degraded ecosystem function by forming mutual relationships with the roots of the plants. The aim of this study was to assess the potential of microorganisms for the improved biomass production of selected woody and succulent seedlings used in mesic thicket restoration. Three tree species were selected for propagation in this study namely; Mystroxylon aethiopicum Scutia myrtina and Aloe ferox. Soil samples were collected from a degraded and intact thicket site from Bathurst, South Africa. Soils were evaluated for number of arbuscular mycorrhizal (AM) spores, mycorrhizal infectivity potential and nutrient availability both before and after seedling propagation. Pasteurized soil from the degraded site was used in a pot trial. Ten replicates seedling for plant species were planted and subjected to four treatments which included inoculation with AM fungi and the rhizobacterium, Enterobacter sp., alone and in combination; the fourth treatment was an un-inouclated control. Plant growth parameters were recorded at regular intervals where appropriate and seedlings were harvested after 24 weeks for biomass measurements and AM colonisation assessments. Although generally low (< 1 spore per gram) the density of AM fungal spores was significantly higher in soils from the intact site when compared with soils from the degraded site. The mycorrhizal potential of the soils was however not significantly different. Mystroxylon aethiopicum seedling shoot height, canopy diameter and shoot biomass showed a significant increase when inoculated with AM fungi while S. myrtina seedlings showed increased shoot height when inoculated with both AM fungi and Enterobacter sp. Aloe ferox seedlings did not respond to microbial inoculation. The concentration of soil P and Na increased in treatments with Enterobacter sp. alone and in combination with AM fungi. Mystroxylon aethiopicum and S. myrtina seedlings showed a dependency on microbial inoculants indicating the importance of inoculation in the nursery before planting out into the field. Overall AM fungal inoculants applied to seedlings can be used to compensate for nutrient deficiency in soils. Although the Enterobacter isolate used was known to have various plant growth promoting capabilities. It is recommended that other rhizobacterial isolates be investigated. , Thesis (MSc) -- Faculty of Science, Environmental Science, 2017
- Full Text:
- Date Issued: 2017
Soil microbial properties and apple tree performance under conventional and organic management
- Authors: Meyer, André Harold
- Date: 2016
- Subjects: Soil management South Africa Western Cape , Agricultural chemicals Environmental aspects , Soil microbiology South Africa Western Cape , Vesicular-arbuscular mycorrhizas , Enzymes Biotechnology , Apples Organic farming South Africa Western Cape
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/64545 , vital:28557
- Description: Conventional (CON) soil management that permits the use of agrochemicals is currently the most common form of management in Western Cape deciduous fruit orchards. There is increasing pressure to minimise or eliminate synthetic agrochemical usage due to its potentially harmful effect on the environment, particularly to non-target soil microorganisms, and to the functions and processes they perform or mediate. In apple orchards, organic (ORG) practices exclude the use of synthetic pesticides and herbicides making use instead of organic fertilisers and naturally derived products as defined by organic certification programs. ORG practices aim to improve nutrient availability, yield, and long-term orchard sustainability relative to CON orchard management practices. If ORG and CON orchard floor management practices affect orchard ecosystems differently, such differences should be measurable in terms of differences in microbiological parameters. In this thesis it is hypothesised that ORG practices would induce positive soil microbiological responses in Western Cape apple orchards relative to CON practices, and by inference general soil health and apple tree performance. To test this hypothesis a polyphasic approach was adopted. This involved measurement of soil microbial activities and functional diversities, by enzyme activity (using colorimetric assays) and carbon-substrate utilisation (using the BIOLOG™ system), respectively. With reference to the enzyme analyses, the performance of a literature-validated, enzyme-based soil health index was also tested. The analyses were supported by coarse-level comparisons of the magnitude of bacteria, fungi, actinobacteria and total heterotroph populations using traditional culturing techniques (dilution plating on growth media). The extent to which the microbial status differed between the applied ORG and CON treatments was thought likely to reflect such treatment-induced variables as soil nutrient status, apple tree nutritional response, tree growth and yield, all of which were determined. Because the root systems of deciduous fruit trees commonly extend to depths >60 cm in well-prepared soils, microbial enzyme activities in the soil depth intervals corresponding to the lower rootzone, were also investigated. This research was carried out in a randomized field trial. Finally, to gain a broader understanding of the effects of contrasting soil management systems on soil microbiology under a greater variety of environmental conditions, arbuscular mycorrhizal (AM) fungal dynamics were explored in a survey of commercial apple orchards. These orchards were selected to span the range of environmental conditions that occur in the apple production areas of the Western Cape. Orchard soils under ORG management promoted richer microbial ecosystems, and appeared to be better able to sustain community metabolic diversity and, by inference, the functions mediated by soil microbial communities, than those under CON management. This implies that ORG approaches possibly afford a better option to sustain critical ecosystem functions than CON management. This possibly explains why use of straw mulches and compost in accordance with ORG practices, compared with CON practices, promoted β-glucosidase, acid phosphatase and urease activities rather than affecting the abundance of the micro-organisms that produce these enzymes. Enzyme activities in the 0–30 cm soil intervals were also more effectively promoted by ORG than CON practices, although no differences were observed at lower depth intervals. ORG practices promoted functional AM associations more effectively than CON practices, but the abundance of glomalin, a beneficial by-product of AM fungi, was unaffected. The greater enzyme activities and higher root colonisation levels in the ORG treatments probably contributed to improved nutritional effects that caused greater vegetative growth, but lower yields, in the ORG treatments. Yield suppression was conceivably due to excessive vegetative growth induced by oversupply of compost and the mineral nutrients contained therein. The survey of Western Cape apple orchards suggested that neither glomalin nor root colonisation bore any specific relationship to production area, cultivation practice, scion x rootstock combination, or, in the case of root colonisation, with any chemical parameters. However, the effect of season on glomalin was conclusively shown, being higher in summer than in spring, as was the lack of any effect of year on glomalin and root colonisation. Collectively, these results showed that ORG soil management promote soil microbiology, soil nutrient status, and apple tree performance compared to CON management. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2016
- Full Text:
- Date Issued: 2016
- Authors: Meyer, André Harold
- Date: 2016
- Subjects: Soil management South Africa Western Cape , Agricultural chemicals Environmental aspects , Soil microbiology South Africa Western Cape , Vesicular-arbuscular mycorrhizas , Enzymes Biotechnology , Apples Organic farming South Africa Western Cape
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/64545 , vital:28557
- Description: Conventional (CON) soil management that permits the use of agrochemicals is currently the most common form of management in Western Cape deciduous fruit orchards. There is increasing pressure to minimise or eliminate synthetic agrochemical usage due to its potentially harmful effect on the environment, particularly to non-target soil microorganisms, and to the functions and processes they perform or mediate. In apple orchards, organic (ORG) practices exclude the use of synthetic pesticides and herbicides making use instead of organic fertilisers and naturally derived products as defined by organic certification programs. ORG practices aim to improve nutrient availability, yield, and long-term orchard sustainability relative to CON orchard management practices. If ORG and CON orchard floor management practices affect orchard ecosystems differently, such differences should be measurable in terms of differences in microbiological parameters. In this thesis it is hypothesised that ORG practices would induce positive soil microbiological responses in Western Cape apple orchards relative to CON practices, and by inference general soil health and apple tree performance. To test this hypothesis a polyphasic approach was adopted. This involved measurement of soil microbial activities and functional diversities, by enzyme activity (using colorimetric assays) and carbon-substrate utilisation (using the BIOLOG™ system), respectively. With reference to the enzyme analyses, the performance of a literature-validated, enzyme-based soil health index was also tested. The analyses were supported by coarse-level comparisons of the magnitude of bacteria, fungi, actinobacteria and total heterotroph populations using traditional culturing techniques (dilution plating on growth media). The extent to which the microbial status differed between the applied ORG and CON treatments was thought likely to reflect such treatment-induced variables as soil nutrient status, apple tree nutritional response, tree growth and yield, all of which were determined. Because the root systems of deciduous fruit trees commonly extend to depths >60 cm in well-prepared soils, microbial enzyme activities in the soil depth intervals corresponding to the lower rootzone, were also investigated. This research was carried out in a randomized field trial. Finally, to gain a broader understanding of the effects of contrasting soil management systems on soil microbiology under a greater variety of environmental conditions, arbuscular mycorrhizal (AM) fungal dynamics were explored in a survey of commercial apple orchards. These orchards were selected to span the range of environmental conditions that occur in the apple production areas of the Western Cape. Orchard soils under ORG management promoted richer microbial ecosystems, and appeared to be better able to sustain community metabolic diversity and, by inference, the functions mediated by soil microbial communities, than those under CON management. This implies that ORG approaches possibly afford a better option to sustain critical ecosystem functions than CON management. This possibly explains why use of straw mulches and compost in accordance with ORG practices, compared with CON practices, promoted β-glucosidase, acid phosphatase and urease activities rather than affecting the abundance of the micro-organisms that produce these enzymes. Enzyme activities in the 0–30 cm soil intervals were also more effectively promoted by ORG than CON practices, although no differences were observed at lower depth intervals. ORG practices promoted functional AM associations more effectively than CON practices, but the abundance of glomalin, a beneficial by-product of AM fungi, was unaffected. The greater enzyme activities and higher root colonisation levels in the ORG treatments probably contributed to improved nutritional effects that caused greater vegetative growth, but lower yields, in the ORG treatments. Yield suppression was conceivably due to excessive vegetative growth induced by oversupply of compost and the mineral nutrients contained therein. The survey of Western Cape apple orchards suggested that neither glomalin nor root colonisation bore any specific relationship to production area, cultivation practice, scion x rootstock combination, or, in the case of root colonisation, with any chemical parameters. However, the effect of season on glomalin was conclusively shown, being higher in summer than in spring, as was the lack of any effect of year on glomalin and root colonisation. Collectively, these results showed that ORG soil management promote soil microbiology, soil nutrient status, and apple tree performance compared to CON management. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2016
- Full Text:
- Date Issued: 2016
Effects of genetically modified maize (MON810) and its residues on the functional diversity of microorganisms in two South African soils
- Authors: Puta, Usanda
- Date: 2011
- Subjects: Genetically modified foods -- South Africa , Transgenic plants -- South Africa , Crops -- Genetic engineering -- South Africa , Soil microbiology -- South Africa , Microorganisms , Microbial ecology , Rhizosphere -- Microbiology , Vesicular-arbuscular mycorrhizas , Corn -- South Africa
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11250 , http://hdl.handle.net/10353/419 , Genetically modified foods -- South Africa , Transgenic plants -- South Africa , Crops -- Genetic engineering -- South Africa , Soil microbiology -- South Africa , Microorganisms , Microbial ecology , Rhizosphere -- Microbiology , Vesicular-arbuscular mycorrhizas , Corn -- South Africa
- Description: Genetically modified (GM) crops are commercially cultivated worldwide but there are concerns on their possible negative impacts on soil biodiversity. A glasshouse study was conducted to determine effects of Bt maize residues on soil microbial diversity. Residues of Bt maize (PAN 6Q-308B) and non-Bt maize (PAN 6Q-121) were incorporated into the soil and corresponding maize seeds planted. The treatments were replicated three times. Fertilizer and water application were similar for both treatments. Rhizosphere and bulk soil was destructively sampled from each treatment and analyzed for microbial community level physiological profiles using Biolog plates with 31 different carbon substrates. Absorbance in the Biolog plates was recorded after 72 h of incubation at 20oC. Arbuscular mycorrhizal fungi spore counts were also determined. Field studies were conducted at the University of Free State and University of Fort Hare Research Farms to determine the effects of growing Bt maize on soil microbial diversity. One Bt maize cultivar (PAN6Q-308B) and non-Bt maize (PAN6Q-121) were grown in a paired experiment at University of Free State farm, while two Bt maize (DKC61-25B and PAN6Q-321B) and their near-isogenic non-Bt maize lines (DKC61-24 and PAN6777) were grown in a randomized complete block design with three replicates. Fertilization, weed control and water application, were similar for both Bt maize cultivars and their non-Bt maize counterparts. Rhizosphere soil samples were collected by uprooting whole plants and collecting the soil attached to the roots. The samples were analysed for microbial diversity and for arbuscular mycorrhizae fungal spore counts. Principal component analysis showed that soil microbial diversity was affected more by sampling time whereas genetic modification had minimal effects. Presence of residues also increased the diversity of microorganisms. Mycorrhizal fungal spores were not affected by the presence of Bt maize residues. Growing Bt maize had no effect on the soil microbial diversity in the rhizosphere.
- Full Text:
- Date Issued: 2011
- Authors: Puta, Usanda
- Date: 2011
- Subjects: Genetically modified foods -- South Africa , Transgenic plants -- South Africa , Crops -- Genetic engineering -- South Africa , Soil microbiology -- South Africa , Microorganisms , Microbial ecology , Rhizosphere -- Microbiology , Vesicular-arbuscular mycorrhizas , Corn -- South Africa
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11250 , http://hdl.handle.net/10353/419 , Genetically modified foods -- South Africa , Transgenic plants -- South Africa , Crops -- Genetic engineering -- South Africa , Soil microbiology -- South Africa , Microorganisms , Microbial ecology , Rhizosphere -- Microbiology , Vesicular-arbuscular mycorrhizas , Corn -- South Africa
- Description: Genetically modified (GM) crops are commercially cultivated worldwide but there are concerns on their possible negative impacts on soil biodiversity. A glasshouse study was conducted to determine effects of Bt maize residues on soil microbial diversity. Residues of Bt maize (PAN 6Q-308B) and non-Bt maize (PAN 6Q-121) were incorporated into the soil and corresponding maize seeds planted. The treatments were replicated three times. Fertilizer and water application were similar for both treatments. Rhizosphere and bulk soil was destructively sampled from each treatment and analyzed for microbial community level physiological profiles using Biolog plates with 31 different carbon substrates. Absorbance in the Biolog plates was recorded after 72 h of incubation at 20oC. Arbuscular mycorrhizal fungi spore counts were also determined. Field studies were conducted at the University of Free State and University of Fort Hare Research Farms to determine the effects of growing Bt maize on soil microbial diversity. One Bt maize cultivar (PAN6Q-308B) and non-Bt maize (PAN6Q-121) were grown in a paired experiment at University of Free State farm, while two Bt maize (DKC61-25B and PAN6Q-321B) and their near-isogenic non-Bt maize lines (DKC61-24 and PAN6777) were grown in a randomized complete block design with three replicates. Fertilization, weed control and water application, were similar for both Bt maize cultivars and their non-Bt maize counterparts. Rhizosphere soil samples were collected by uprooting whole plants and collecting the soil attached to the roots. The samples were analysed for microbial diversity and for arbuscular mycorrhizae fungal spore counts. Principal component analysis showed that soil microbial diversity was affected more by sampling time whereas genetic modification had minimal effects. Presence of residues also increased the diversity of microorganisms. Mycorrhizal fungal spores were not affected by the presence of Bt maize residues. Growing Bt maize had no effect on the soil microbial diversity in the rhizosphere.
- Full Text:
- Date Issued: 2011
Interaction between arbuscular mycorrhizal fungi and soil microbial populations in the rhizosphere
- Authors: Ike-Izundu, Nnenna Esther
- Date: 2008
- Subjects: Mycorrhizas , Mycorrhizal fungi , Vesicular-arbuscular mycorrhizas , Soil microbiology , Rhizosphere , Revegetation , Restoration ecology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3962 , http://hdl.handle.net/10962/d1004021 , Mycorrhizas , Mycorrhizal fungi , Vesicular-arbuscular mycorrhizas , Soil microbiology , Rhizosphere , Revegetation , Restoration ecology
- Description: This study examined the rehabilitation potential of AM fungi with organic and inorganic fertilisers under pot and field trial conditions as well as their interaction with rhizospheric organisms and specific functional groups. In addition, the study highlighted the effects of land-use management on AM fungal populations in soil and the mycorrhizal status of some selected plants from one of the study sites. The study focussed on two sites that differ in operational activities and these included a mined area that was to be rehabilitated and a commercial farming site. A pot trial was conducted using an overburdened soil resulting from kaolin clay mining. Pots were seeded with Cynodon dactylon and treated with either Organic Tea or NPK (3:1:5) fertiliser, with or without AM fungal inoculum. The compatibility of these fertilisers with AM fungi was assessed by plant growth and percentage root colonisation. Maximum shoot height and plant biomass were observed at the 28th week with NPK (3:1:5) fertiliser supporting mycorrhizal colonisation by 80%. The result indicated the potential of AM fungi to be used in rehabilitation with minimal phosphate fertiliser. Similarly, a field trial was set-up using 17 x 17 m[superscript 2] plots in the mining site that were treated with the same organic and inorganic fertilisers as well as with AM fungal inoculum in different combinations. The interaction between AM fungi and soil microbial population was determined using culture dependent and culture independent techniques. The culture dependent technique involved the use of soil dilution and plating on general purpose and selective media. The result showed that there was no change in the total culturable bacterial number in the untreated and AM fungal treated plots, while a change in species composition was observed in the functional groups. Different functional groups identified included nitrogen fixing bacteria, pseudomonads, actinomycetes, phosphate solubilisers and the fungal counterparts. Gram-positive bacteria were observed as the predominant phenotypic type, while nitrogen fixers and actinomycetes were the predominant functional groups. Species identified from each functional group were Pseudomonas fulva, Bacillus megaterium, Streptomyces and actinomycetales bacteria. Meanwhile, fungi such as Ampelomyces, Fusarium, Penicillium, Aspergillus, Cephalosporium and Exserohilium were identified morphologically and molecularly. Furthermore, the mining site had a significantly higher bacterial number than the farming site thereby indicating the effects of land-use management on culturable bacterial numbers. The culture independent technique was carried out by cloning of the bacterial 16S rDNA and sequencing. Identified clones were Bradyrhizobium, Propionibacterium and Sporichthya. A cladogram constructed with the nucleotides sequences of identified functional species, clones and closely related nucleotide sequences from the Genbank indicated that nucleotide sequences differed in terms of the method used. The activity and establishment of the introduced AM fungal population was determined by spore enumeration, infectivity assay, percentage root colonisation and assessment of glomalin concentrations. The results indicated that the two land use types affected AM fungal populations. However, the establishment of AM fungi in the farming site was more successful than in the mining site as indicated by the higher infectivity pontential. Selected host plants, which were collected around the mine area, were observed to be mainly colonised by AM fungi and these were identified as Pentzia incana, Elytropappus rhinocerotis, Euphorbia meloformis, Selago corymbosa, Albuca canadensis and Helichrysum rosum. These plant species were able to thrive under harsh environmental conditions, thereby indicating their potential use as rehabilitation host plants. Generally, the findings of this study has provided an insight into the interaction between arbuscular mycorrhizal fungi and other soil microorganisms in two fields with differing land use management practices.
- Full Text:
- Date Issued: 2008
- Authors: Ike-Izundu, Nnenna Esther
- Date: 2008
- Subjects: Mycorrhizas , Mycorrhizal fungi , Vesicular-arbuscular mycorrhizas , Soil microbiology , Rhizosphere , Revegetation , Restoration ecology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3962 , http://hdl.handle.net/10962/d1004021 , Mycorrhizas , Mycorrhizal fungi , Vesicular-arbuscular mycorrhizas , Soil microbiology , Rhizosphere , Revegetation , Restoration ecology
- Description: This study examined the rehabilitation potential of AM fungi with organic and inorganic fertilisers under pot and field trial conditions as well as their interaction with rhizospheric organisms and specific functional groups. In addition, the study highlighted the effects of land-use management on AM fungal populations in soil and the mycorrhizal status of some selected plants from one of the study sites. The study focussed on two sites that differ in operational activities and these included a mined area that was to be rehabilitated and a commercial farming site. A pot trial was conducted using an overburdened soil resulting from kaolin clay mining. Pots were seeded with Cynodon dactylon and treated with either Organic Tea or NPK (3:1:5) fertiliser, with or without AM fungal inoculum. The compatibility of these fertilisers with AM fungi was assessed by plant growth and percentage root colonisation. Maximum shoot height and plant biomass were observed at the 28th week with NPK (3:1:5) fertiliser supporting mycorrhizal colonisation by 80%. The result indicated the potential of AM fungi to be used in rehabilitation with minimal phosphate fertiliser. Similarly, a field trial was set-up using 17 x 17 m[superscript 2] plots in the mining site that were treated with the same organic and inorganic fertilisers as well as with AM fungal inoculum in different combinations. The interaction between AM fungi and soil microbial population was determined using culture dependent and culture independent techniques. The culture dependent technique involved the use of soil dilution and plating on general purpose and selective media. The result showed that there was no change in the total culturable bacterial number in the untreated and AM fungal treated plots, while a change in species composition was observed in the functional groups. Different functional groups identified included nitrogen fixing bacteria, pseudomonads, actinomycetes, phosphate solubilisers and the fungal counterparts. Gram-positive bacteria were observed as the predominant phenotypic type, while nitrogen fixers and actinomycetes were the predominant functional groups. Species identified from each functional group were Pseudomonas fulva, Bacillus megaterium, Streptomyces and actinomycetales bacteria. Meanwhile, fungi such as Ampelomyces, Fusarium, Penicillium, Aspergillus, Cephalosporium and Exserohilium were identified morphologically and molecularly. Furthermore, the mining site had a significantly higher bacterial number than the farming site thereby indicating the effects of land-use management on culturable bacterial numbers. The culture independent technique was carried out by cloning of the bacterial 16S rDNA and sequencing. Identified clones were Bradyrhizobium, Propionibacterium and Sporichthya. A cladogram constructed with the nucleotides sequences of identified functional species, clones and closely related nucleotide sequences from the Genbank indicated that nucleotide sequences differed in terms of the method used. The activity and establishment of the introduced AM fungal population was determined by spore enumeration, infectivity assay, percentage root colonisation and assessment of glomalin concentrations. The results indicated that the two land use types affected AM fungal populations. However, the establishment of AM fungi in the farming site was more successful than in the mining site as indicated by the higher infectivity pontential. Selected host plants, which were collected around the mine area, were observed to be mainly colonised by AM fungi and these were identified as Pentzia incana, Elytropappus rhinocerotis, Euphorbia meloformis, Selago corymbosa, Albuca canadensis and Helichrysum rosum. These plant species were able to thrive under harsh environmental conditions, thereby indicating their potential use as rehabilitation host plants. Generally, the findings of this study has provided an insight into the interaction between arbuscular mycorrhizal fungi and other soil microorganisms in two fields with differing land use management practices.
- Full Text:
- Date Issued: 2008
Investigating the effect of Glomus etunicatum colonization on structure and phloem transport in roots of Eragrostis curvula (Umgeni)
- Authors: Skinner, Amy
- Date: 2007
- Subjects: Glomus (Fungi) , Phloem , Plant translocation , Weeping lovegrass , Vesicular-arbuscular mycorrhizas , Mycorrhizal fungi , Mycorrhizas
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4227 , http://hdl.handle.net/10962/d1003796 , Glomus (Fungi) , Phloem , Plant translocation , Weeping lovegrass , Vesicular-arbuscular mycorrhizas , Mycorrhizal fungi , Mycorrhizas
- Description: The symbiotic unit of an arbuscular mycorrhizal fungus and its host is able toachieve and maintain far higher inflow of nutrients than non-mycorrhizal roots. The colonization strategy of the mycobiont within the plant is intrinsic to the symbiosis with respect to both structural adaptations and nutrient exchange. An investigation into the effect of Glomus etunicatum colonization on the structure and phloem transport in Eragrostis curvula (Umgeni) allowed for greater insight into the dynamic of the symbiosis. The combined use of stains (such as Trypan Blue, Chlorazol Black, Safranin and Fast Green), and techniques, (such as freeze-microtome transverse sectioning and permanent slide preparations) contributed to a successful general observation of an intermediate colonization strategy using light microscopy methods. However, clarity into structural detail of mycorrhizal forms required electron microscopy studies. The SEM method used with freeze fracture was a relatively quick and simple method allowing for the observation of surface and internal features. The TEM method allowed for highresolution images providing insight into the variations in the apoplasmic compartmental form, and how this may relate to the function of the symbiosis with regard to fungal coils or arbuscules. The apoplasmic nature of mycorrhizas was substantiated and no symplasmic connections were found between symbionts. Fluorescence studies demonstrated that 5,6-carboxyfluorescein was transported through the phloem into the roots of E. curvula, but remained predominantly in the root phloem. Unloading only occurred in optimal nutrient exchange areas of meristimatic lateral or apical growth regions. It was not possible, using fluorescence techniques and related equipment available, to conclusively establish if there were symplasmic connections between the mycobiont and its host or if bidirectional transfer of nutrients occurred at the same interface.
- Full Text:
- Date Issued: 2007
- Authors: Skinner, Amy
- Date: 2007
- Subjects: Glomus (Fungi) , Phloem , Plant translocation , Weeping lovegrass , Vesicular-arbuscular mycorrhizas , Mycorrhizal fungi , Mycorrhizas
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4227 , http://hdl.handle.net/10962/d1003796 , Glomus (Fungi) , Phloem , Plant translocation , Weeping lovegrass , Vesicular-arbuscular mycorrhizas , Mycorrhizal fungi , Mycorrhizas
- Description: The symbiotic unit of an arbuscular mycorrhizal fungus and its host is able toachieve and maintain far higher inflow of nutrients than non-mycorrhizal roots. The colonization strategy of the mycobiont within the plant is intrinsic to the symbiosis with respect to both structural adaptations and nutrient exchange. An investigation into the effect of Glomus etunicatum colonization on the structure and phloem transport in Eragrostis curvula (Umgeni) allowed for greater insight into the dynamic of the symbiosis. The combined use of stains (such as Trypan Blue, Chlorazol Black, Safranin and Fast Green), and techniques, (such as freeze-microtome transverse sectioning and permanent slide preparations) contributed to a successful general observation of an intermediate colonization strategy using light microscopy methods. However, clarity into structural detail of mycorrhizal forms required electron microscopy studies. The SEM method used with freeze fracture was a relatively quick and simple method allowing for the observation of surface and internal features. The TEM method allowed for highresolution images providing insight into the variations in the apoplasmic compartmental form, and how this may relate to the function of the symbiosis with regard to fungal coils or arbuscules. The apoplasmic nature of mycorrhizas was substantiated and no symplasmic connections were found between symbionts. Fluorescence studies demonstrated that 5,6-carboxyfluorescein was transported through the phloem into the roots of E. curvula, but remained predominantly in the root phloem. Unloading only occurred in optimal nutrient exchange areas of meristimatic lateral or apical growth regions. It was not possible, using fluorescence techniques and related equipment available, to conclusively establish if there were symplasmic connections between the mycobiont and its host or if bidirectional transfer of nutrients occurred at the same interface.
- Full Text:
- Date Issued: 2007
The role of arbuscular mycorrhizal fungi in the biotransformation of coal and application in dump rehabilitation
- Mukasa-Mugerwa, Thomas Tendo
- Authors: Mukasa-Mugerwa, Thomas Tendo
- Date: 2007
- Subjects: Vesicular-arbuscular mycorrhizas , Mycorrhizal fungi , Fungi -- Biotechnology , Bermuda grass , Coal mines and mining -- Environmental aspects , Acid mine drainage
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3999 , http://hdl.handle.net/10962/d1004059 , Vesicular-arbuscular mycorrhizas , Mycorrhizal fungi , Fungi -- Biotechnology , Bermuda grass , Coal mines and mining -- Environmental aspects , Acid mine drainage
- Description: Fundamental processes underpinning the biotransformation of coal by fungal biocatalysts have been intensively investigated, however, limited large-scale industrial applications using such systems have been reported. The un-anticipated sporadic growth of Cynodon dactylon on the surface of un-rehabilitated discard coal dumps has been noted and this was found to be coupled with the breakdown of coal into a humic soil-like material in the top 1.5 metres of the dumps. Extensive fungal growth was observed to be associated with the Cynodon dactylon root system and examination of plant roots indicated the presence of mycorrhizal fungi. Analysis of the Cynodon dactylon plant roots around which coal biotransformation was occurring confirmed the presence of arbuscular mycorrhizal colonisation with the species Glomus clarum, Paraglomus occultum, Gigaspora gigantea and Glomus mosseae identified to be associated with the plants. Further molecular characterisation of non-mycorrhizal rhizospheric fungi showed the presence of fungal species with coal-degrading capabilities that most likely played a role in the coal biotransformation observed. The discard coal dump environment was simulated in pot and column studies and coal biotransformation was reproduced, with this process enhanced by the addition of mycorrhizal and non-mycorrhizal rhizospheric fungal inocula to the environment. Mycorrhizal and non-mycorrhizal species in the inoculum were re-isolated from the simulated environment fulfilling a number of Koch’s postulates and indicating a causal role in the biotransformation of coal. An inversion of conventional mycorrhizal colonisation was demonstrated in this system with reduction in extraradicular presence and an increase in intracellular colonisation compared to soil controls. A descriptive model was formulated suggesting a two-part fungal system involving organic carbon and nutrient exchange between the plant, mycorrhizal fungi and non-mycorrhizal coal-degrading rhizospheric fungi ultimately resulting in the biotransformation of coal. The biotransformation observed was comparable to reports of “rock-eating fungi”. Results suggest that the biological degradation of coal in situ with the production of a soil-like substrate could provide a feasible method of discard coal dump rehabilitation as well as provide a humic-rich substrate that can be utilised in further industrial applications.
- Full Text:
- Date Issued: 2007
- Authors: Mukasa-Mugerwa, Thomas Tendo
- Date: 2007
- Subjects: Vesicular-arbuscular mycorrhizas , Mycorrhizal fungi , Fungi -- Biotechnology , Bermuda grass , Coal mines and mining -- Environmental aspects , Acid mine drainage
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3999 , http://hdl.handle.net/10962/d1004059 , Vesicular-arbuscular mycorrhizas , Mycorrhizal fungi , Fungi -- Biotechnology , Bermuda grass , Coal mines and mining -- Environmental aspects , Acid mine drainage
- Description: Fundamental processes underpinning the biotransformation of coal by fungal biocatalysts have been intensively investigated, however, limited large-scale industrial applications using such systems have been reported. The un-anticipated sporadic growth of Cynodon dactylon on the surface of un-rehabilitated discard coal dumps has been noted and this was found to be coupled with the breakdown of coal into a humic soil-like material in the top 1.5 metres of the dumps. Extensive fungal growth was observed to be associated with the Cynodon dactylon root system and examination of plant roots indicated the presence of mycorrhizal fungi. Analysis of the Cynodon dactylon plant roots around which coal biotransformation was occurring confirmed the presence of arbuscular mycorrhizal colonisation with the species Glomus clarum, Paraglomus occultum, Gigaspora gigantea and Glomus mosseae identified to be associated with the plants. Further molecular characterisation of non-mycorrhizal rhizospheric fungi showed the presence of fungal species with coal-degrading capabilities that most likely played a role in the coal biotransformation observed. The discard coal dump environment was simulated in pot and column studies and coal biotransformation was reproduced, with this process enhanced by the addition of mycorrhizal and non-mycorrhizal rhizospheric fungal inocula to the environment. Mycorrhizal and non-mycorrhizal species in the inoculum were re-isolated from the simulated environment fulfilling a number of Koch’s postulates and indicating a causal role in the biotransformation of coal. An inversion of conventional mycorrhizal colonisation was demonstrated in this system with reduction in extraradicular presence and an increase in intracellular colonisation compared to soil controls. A descriptive model was formulated suggesting a two-part fungal system involving organic carbon and nutrient exchange between the plant, mycorrhizal fungi and non-mycorrhizal coal-degrading rhizospheric fungi ultimately resulting in the biotransformation of coal. The biotransformation observed was comparable to reports of “rock-eating fungi”. Results suggest that the biological degradation of coal in situ with the production of a soil-like substrate could provide a feasible method of discard coal dump rehabilitation as well as provide a humic-rich substrate that can be utilised in further industrial applications.
- Full Text:
- Date Issued: 2007
- «
- ‹
- 1
- ›
- »