Inclusion complexation and liposomal encapsulation of an isoniazid hydrazone derivative in cyclodextrin for pH-dependent controlled release
- Safari, Justin B, Mona, Lamine B, Sekaleli, Bafokeng T, Avudi, Bénite K, Isamura, Bienfait K, Mukubwa, Grady K, Salami, Sodeeq A, Mbinze, Jérémie K, Lobb, Kevin A, Krause, Rui W M, Nkanga, Christian I
- Authors: Safari, Justin B , Mona, Lamine B , Sekaleli, Bafokeng T , Avudi, Bénite K , Isamura, Bienfait K , Mukubwa, Grady K , Salami, Sodeeq A , Mbinze, Jérémie K , Lobb, Kevin A , Krause, Rui W M , Nkanga, Christian I
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452727 , vital:75166 , xlink:href="https://doi.org/10.1016/j.jddst.2023.104302"
- Description: Tuberculosis, a predominantly pulmonary pathology, is currently the deadliest infection worldwide. Its treatment is based on combination therapy involving selected antimicrobials including Isoniazid. However, physicochemical properties of isoniazid negatively affect the clinical performance of current tuberculosis regimens, causing drug resistance development and increasing mortality rates. Liposomal encapsulation improves antituberculosis drug delivery; however, nano-formulation of isoniazid remains challenging due to its small molecular size and high hydrophilicity. Therefore, this study aimed to derivatize isoniazid and formulate a controlled delivery system using the concept of drug-in-cyclodextrins-in-liposomes to enhance drug biopharmaceutical properties. A prodrug of isoniazid was synthesized and screened for its ability to form stable complexes with α, β, and γ cyclodextrins. A selected inclusion complex with β-cyclodextrin was encapsulated in liposomes and assessed for controlled release of isoniazid. Successful formation of a 1:1 complex was established and characterized, followed by molecular modeling studies to demonstrate strength of the interactions within the complex and predicted complex structure. The inclusion complex was successfully encapsulated in liposomes using the thin film hydration method and the ethanol injection ultrasonic dispersion, with the latter giving the best results. These findings demonstrate the potential.
- Full Text:
- Date Issued: 2023
- Authors: Safari, Justin B , Mona, Lamine B , Sekaleli, Bafokeng T , Avudi, Bénite K , Isamura, Bienfait K , Mukubwa, Grady K , Salami, Sodeeq A , Mbinze, Jérémie K , Lobb, Kevin A , Krause, Rui W M , Nkanga, Christian I
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452727 , vital:75166 , xlink:href="https://doi.org/10.1016/j.jddst.2023.104302"
- Description: Tuberculosis, a predominantly pulmonary pathology, is currently the deadliest infection worldwide. Its treatment is based on combination therapy involving selected antimicrobials including Isoniazid. However, physicochemical properties of isoniazid negatively affect the clinical performance of current tuberculosis regimens, causing drug resistance development and increasing mortality rates. Liposomal encapsulation improves antituberculosis drug delivery; however, nano-formulation of isoniazid remains challenging due to its small molecular size and high hydrophilicity. Therefore, this study aimed to derivatize isoniazid and formulate a controlled delivery system using the concept of drug-in-cyclodextrins-in-liposomes to enhance drug biopharmaceutical properties. A prodrug of isoniazid was synthesized and screened for its ability to form stable complexes with α, β, and γ cyclodextrins. A selected inclusion complex with β-cyclodextrin was encapsulated in liposomes and assessed for controlled release of isoniazid. Successful formation of a 1:1 complex was established and characterized, followed by molecular modeling studies to demonstrate strength of the interactions within the complex and predicted complex structure. The inclusion complex was successfully encapsulated in liposomes using the thin film hydration method and the ethanol injection ultrasonic dispersion, with the latter giving the best results. These findings demonstrate the potential.
- Full Text:
- Date Issued: 2023
Biocompatibility of biomaterials for nanoencapsulation: Current approaches
- Witika, Bwalya A, Makoni, Pedzisai A, Matafwali, Scott K, Chabalenge, Billy, Mwila, Chiluba, Kalungia, Aubrey C, Nkanga, Christian I, Bapolisi, Alain M, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Chabalenge, Billy , Mwila, Chiluba , Kalungia, Aubrey C , Nkanga, Christian I , Bapolisi, Alain M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183289 , vital:43939 , xlink:href="https://doi.org/10.3390/nano10091649"
- Description: Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
- Full Text:
- Date Issued: 2020
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Chabalenge, Billy , Mwila, Chiluba , Kalungia, Aubrey C , Nkanga, Christian I , Bapolisi, Alain M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183289 , vital:43939 , xlink:href="https://doi.org/10.3390/nano10091649"
- Description: Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
- Full Text:
- Date Issued: 2020
Clinically established biodegradable long acting injectables
- Nkanga, Christian I, Fisch, Andreas, Rad-Malkshahi, Mazda, Romic, Marieta D, Kittel, Birgit, Ullrich, Thomas, Wang, Jing, Krause, Rui W M, Adler, Sabine, Lammers, Twan, Hennink, Wim E, Ramazani, Farshad
- Authors: Nkanga, Christian I , Fisch, Andreas , Rad-Malkshahi, Mazda , Romic, Marieta D , Kittel, Birgit , Ullrich, Thomas , Wang, Jing , Krause, Rui W M , Adler, Sabine , Lammers, Twan , Hennink, Wim E , Ramazani, Farshad
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193386 , vital:45327 , xlink:href="https://doi.org/10.1016/j.addr.2020.11.008"
- Description: Long acting injectable formulations have been developed to sustain the action of drugs in the body over desired periods of time. These delivery platforms have been utilized for both systemic and local drug delivery applications. This review gives an overview of long acting injectable systems that are currently in clinical use. These products are categorized in three different groups: biodegradable polymeric systems, including microparticles and implants; micro and nanocrystal suspensions and oil-based formulations. Furthermore, the applications of these drug delivery platforms for the management of various chronic diseases are summarized. Finally, this review addresses industrial challenges regarding the development of long acting injectable formulations.
- Full Text:
- Date Issued: 2020
- Authors: Nkanga, Christian I , Fisch, Andreas , Rad-Malkshahi, Mazda , Romic, Marieta D , Kittel, Birgit , Ullrich, Thomas , Wang, Jing , Krause, Rui W M , Adler, Sabine , Lammers, Twan , Hennink, Wim E , Ramazani, Farshad
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193386 , vital:45327 , xlink:href="https://doi.org/10.1016/j.addr.2020.11.008"
- Description: Long acting injectable formulations have been developed to sustain the action of drugs in the body over desired periods of time. These delivery platforms have been utilized for both systemic and local drug delivery applications. This review gives an overview of long acting injectable systems that are currently in clinical use. These products are categorized in three different groups: biodegradable polymeric systems, including microparticles and implants; micro and nanocrystal suspensions and oil-based formulations. Furthermore, the applications of these drug delivery platforms for the management of various chronic diseases are summarized. Finally, this review addresses industrial challenges regarding the development of long acting injectable formulations.
- Full Text:
- Date Issued: 2020
Co-loading of isoniazid-grafted phthalocyanine-in-cyclodextrin and rifampicin in crude soybean lecithin liposomes: Formulation, spectroscopic and biological characterization
- Nkanga, Christian I, Roth, Michael, Walker, Roderick B, Noundou, Xavier S, Krause, Rui W M
- Authors: Nkanga, Christian I , Roth, Michael , Walker, Roderick B , Noundou, Xavier S , Krause, Rui W M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183481 , vital:43999 , xlink:href="https://doi.org/10.1166/jbn.2020.2880"
- Description: An inclusion complex of isoniazid-grafted phthalocyanine with gamma-cyclodextrin (Complex) was co-encapsulated with rifampicin (RIF) in crude soybean lecithin liposomes using a heating method. The encapsulation efficiency (%EE) of the Complex-RIF co-loaded liposomes (Rif-Complex-Lips) was determined using UV-Vis spectrophotometry. Rif-Complex-Lips formulations were evaluated using dynamic light scattering, transmission electron microscopy (TEM), 1H-NMR, absorption and emission spectroscopy. Dialysis was used for drug release study in two different media, pH 6.4 and 7.4. HeLa cells were used to assess potential cytotoxicity, and the uptake by lung fibroblasts and epithelial cells was investigated using fluorescence microscopy. The particle size and Zeta potential of Rif-Complex-Lips were approximately 594 nm and –50 mV. Spectroscopic analyses demonstrated molecular distribution of the cargo within the lipid core, and encapsulation efficiency of 58% for Complex and 86% for RIF. TEM analysis unveiled the existence of spherical nanoparticles in our samples, indicating the presence of liposomes. Rif-Complex-Lips exhibited much higher release rates for both INH and RIF at pH 6.4 compared to those tested at pH 7.4. In addition, there was no cytotoxicity on HeLa cells, but remarkable Rif-Complex-Lips internalization by peripheral lung fibroblasts and epithelial cells. Hence, Rif-Complex-Lips are promising vehicles for intracellular delivery of antimicrobial drugs.
- Full Text:
- Date Issued: 2020
- Authors: Nkanga, Christian I , Roth, Michael , Walker, Roderick B , Noundou, Xavier S , Krause, Rui W M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183481 , vital:43999 , xlink:href="https://doi.org/10.1166/jbn.2020.2880"
- Description: An inclusion complex of isoniazid-grafted phthalocyanine with gamma-cyclodextrin (Complex) was co-encapsulated with rifampicin (RIF) in crude soybean lecithin liposomes using a heating method. The encapsulation efficiency (%EE) of the Complex-RIF co-loaded liposomes (Rif-Complex-Lips) was determined using UV-Vis spectrophotometry. Rif-Complex-Lips formulations were evaluated using dynamic light scattering, transmission electron microscopy (TEM), 1H-NMR, absorption and emission spectroscopy. Dialysis was used for drug release study in two different media, pH 6.4 and 7.4. HeLa cells were used to assess potential cytotoxicity, and the uptake by lung fibroblasts and epithelial cells was investigated using fluorescence microscopy. The particle size and Zeta potential of Rif-Complex-Lips were approximately 594 nm and –50 mV. Spectroscopic analyses demonstrated molecular distribution of the cargo within the lipid core, and encapsulation efficiency of 58% for Complex and 86% for RIF. TEM analysis unveiled the existence of spherical nanoparticles in our samples, indicating the presence of liposomes. Rif-Complex-Lips exhibited much higher release rates for both INH and RIF at pH 6.4 compared to those tested at pH 7.4. In addition, there was no cytotoxicity on HeLa cells, but remarkable Rif-Complex-Lips internalization by peripheral lung fibroblasts and epithelial cells. Hence, Rif-Complex-Lips are promising vehicles for intracellular delivery of antimicrobial drugs.
- Full Text:
- Date Issued: 2020
Encapsulation and physicochemical evaluation of efavirenz in liposomes
- Okafor, Nnamdi Ikemefuna, Nkanga, Christian I, Walker, Roderick B, Noundou, Xavier S, Krause, Rui W M
- Authors: Okafor, Nnamdi Ikemefuna , Nkanga, Christian I , Walker, Roderick B , Noundou, Xavier S , Krause, Rui W M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183414 , vital:43988 , xlink:href="https://doi.org/10.1007/s40005-019-00458-8"
- Description: Antiretroviral therapy remains the most efective means of managing the human immune defciency virus/acquired immune defciency syndrome (HIV/AIDS). Application of therapeutics has been hampered by factors including poor bioavailability of most anti-retroviral compounds (ARV), side efects and an alarming emergence of drug resistant strains of the virus. Recent developments and use of drug delivery systems (DDS) has shown potential for improving the pharmacological profle of ARV. Amongst these complex DDS, liposomes have been explored for delivery of ARV. In this study, we have aimed at exploring efcient encapsulation of efavirenz (EFV), a potent ARV using diferent mass ratios of crude soybean lecithin and cholesterol. The EFV-loaded liposomes (EFL) were prepared using thin flm hydration and evaluated for particle size, zeta potential (ZP), encapsulation efciency (EE%), morphology and drug release studies. Diferential scanning calorimetry (DSC), X-ray difraction (XRD), energy dispersity spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy were used for comprehensive physicochemical characterization of EFL. EFL exhibited high encapsulation (99%) in 1:1 crude lecithin to cholesterol mass ratio. The average particle size and Zeta Potential of EFL were found to be 411.10±7.40 nm and −53.5.3±0.06 mV, respectively. EFL showed a relatively controlled EFV release behaviour that was similar to the dissolution profle of un-encapsulated EFV. This suggests that EFL represents a promising vehicle for efective EFV delivery while providing the advantages of a nano-scaled delivery system
- Full Text:
- Date Issued: 2020
- Authors: Okafor, Nnamdi Ikemefuna , Nkanga, Christian I , Walker, Roderick B , Noundou, Xavier S , Krause, Rui W M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183414 , vital:43988 , xlink:href="https://doi.org/10.1007/s40005-019-00458-8"
- Description: Antiretroviral therapy remains the most efective means of managing the human immune defciency virus/acquired immune defciency syndrome (HIV/AIDS). Application of therapeutics has been hampered by factors including poor bioavailability of most anti-retroviral compounds (ARV), side efects and an alarming emergence of drug resistant strains of the virus. Recent developments and use of drug delivery systems (DDS) has shown potential for improving the pharmacological profle of ARV. Amongst these complex DDS, liposomes have been explored for delivery of ARV. In this study, we have aimed at exploring efcient encapsulation of efavirenz (EFV), a potent ARV using diferent mass ratios of crude soybean lecithin and cholesterol. The EFV-loaded liposomes (EFL) were prepared using thin flm hydration and evaluated for particle size, zeta potential (ZP), encapsulation efciency (EE%), morphology and drug release studies. Diferential scanning calorimetry (DSC), X-ray difraction (XRD), energy dispersity spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy were used for comprehensive physicochemical characterization of EFL. EFL exhibited high encapsulation (99%) in 1:1 crude lecithin to cholesterol mass ratio. The average particle size and Zeta Potential of EFL were found to be 411.10±7.40 nm and −53.5.3±0.06 mV, respectively. EFL showed a relatively controlled EFV release behaviour that was similar to the dissolution profle of un-encapsulated EFV. This suggests that EFL represents a promising vehicle for efective EFV delivery while providing the advantages of a nano-scaled delivery system
- Full Text:
- Date Issued: 2020
Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea)
- Kambale, Espoir K, Nkanga, Christian I, Mutonkole, Blaise-Pascal I, Bapolisi, Alain M, Tassa, Daniel O, Liesse, Jean-Marie I, Krause, Rui W M, Memvanga, Patrick B
- Authors: Kambale, Espoir K , Nkanga, Christian I , Mutonkole, Blaise-Pascal I , Bapolisi, Alain M , Tassa, Daniel O , Liesse, Jean-Marie I , Krause, Rui W M , Memvanga, Patrick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193419 , vital:45330 , xlink:href="https://doi.org/10.1016/j.heliyon.2020.e04493"
- Description: In the present study, silver nanoparticles (AgNPs) were synthesized using aqueous leaf extracts of three Congolese plant species, namely Brillantaisia patula (BR-PA), Crossopteryx febrifuga (CR-FE) and Senna siamea (SE-SI). The obtained AgNPs were studied for their optical, structural, surface morphological and antibacterial properties. The prepared AgNPs were characterized by using UV-Visible spectra, Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray spectroscopy (EDX) and X-ray diffractometer (XRD). The synthesized nanoparticles were spherical shaped and well-dispersed with average sizes ranging from 45 to 110 nm. The AgNPs derived from BR-PA, CR-FE and SE-SI exhibited higher antibacterial activity against three bacterial pathogens of the human skin compared to their respective crude extracts and AgNO3. This indicated that the biomolecules covering the nanoparticles may enhance the biological activity of metal nanoparticles. Hence, our results support that biogenic synthesis of AgNPs from Congolese plants constitutes a potential area of interest for the therapeutic management of microbial diseases such as infectious skin diseases.
- Full Text:
- Date Issued: 2020
- Authors: Kambale, Espoir K , Nkanga, Christian I , Mutonkole, Blaise-Pascal I , Bapolisi, Alain M , Tassa, Daniel O , Liesse, Jean-Marie I , Krause, Rui W M , Memvanga, Patrick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193419 , vital:45330 , xlink:href="https://doi.org/10.1016/j.heliyon.2020.e04493"
- Description: In the present study, silver nanoparticles (AgNPs) were synthesized using aqueous leaf extracts of three Congolese plant species, namely Brillantaisia patula (BR-PA), Crossopteryx febrifuga (CR-FE) and Senna siamea (SE-SI). The obtained AgNPs were studied for their optical, structural, surface morphological and antibacterial properties. The prepared AgNPs were characterized by using UV-Visible spectra, Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray spectroscopy (EDX) and X-ray diffractometer (XRD). The synthesized nanoparticles were spherical shaped and well-dispersed with average sizes ranging from 45 to 110 nm. The AgNPs derived from BR-PA, CR-FE and SE-SI exhibited higher antibacterial activity against three bacterial pathogens of the human skin compared to their respective crude extracts and AgNO3. This indicated that the biomolecules covering the nanoparticles may enhance the biological activity of metal nanoparticles. Hence, our results support that biogenic synthesis of AgNPs from Congolese plants constitutes a potential area of interest for the therapeutic management of microbial diseases such as infectious skin diseases.
- Full Text:
- Date Issued: 2020
Simultaneous liposomal encapsulation of antibiotics and proteins: co-loading and characterization of rifampicin and Human Serum Albumin in soy-liposomes
- Bapolisi, Alain M, Nkanga, Christian I, Walker, Roderick B, Krause, Rui W M
- Authors: Bapolisi, Alain M , Nkanga, Christian I , Walker, Roderick B , Krause, Rui W M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148617 , vital:38755 , https://doi.org/10.1016/j.jddst.2020.101751
- Description: The recurrent development of resistance to antimicrobial agents threatens the ability for successful treatment of infectious diseases. Hydrophobic antibiotics such as rifampicin (Rif) are particularly affected due to poor bioavailability. On the other hand, proteins play important roles in drug delivery and release. Further, the combination of antimicrobials with therapeutic proteins and their encapsulation in liposomes seems a promising approach for improvement of antimicrobial efficacy. This study aimed to encapsulate Rif simultaneously with a large protein, Human Serum Albumin (HSA) in liposomes made from an inexpensive crude soy lecithin (CSL).
- Full Text:
- Date Issued: 2020
- Authors: Bapolisi, Alain M , Nkanga, Christian I , Walker, Roderick B , Krause, Rui W M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148617 , vital:38755 , https://doi.org/10.1016/j.jddst.2020.101751
- Description: The recurrent development of resistance to antimicrobial agents threatens the ability for successful treatment of infectious diseases. Hydrophobic antibiotics such as rifampicin (Rif) are particularly affected due to poor bioavailability. On the other hand, proteins play important roles in drug delivery and release. Further, the combination of antimicrobials with therapeutic proteins and their encapsulation in liposomes seems a promising approach for improvement of antimicrobial efficacy. This study aimed to encapsulate Rif simultaneously with a large protein, Human Serum Albumin (HSA) in liposomes made from an inexpensive crude soy lecithin (CSL).
- Full Text:
- Date Issued: 2020
Synthesis of pH sensitive dual capped CdTe QDs: their optical properties and structural morphology
- Daramola, Olamide A, Noundou, Xavier S, Nkanga, Christian I, Tseki, Potlaki F, Krause, Rui W M
- Authors: Daramola, Olamide A , Noundou, Xavier S , Nkanga, Christian I , Tseki, Potlaki F , Krause, Rui W M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/156364 , vital:39983 , https://doi.org/10.1007/s10895-020-02526-x
- Description: We herein report five different types of thiol dual capped cadmium tellurite quantum dots (CdTe QDs) namely glutathionemercapto-propanoic acid (QD 1), glutathione-thiolglycolic acid (QD 2), L-cysteine-mercapto-propanoic acid (QD 3), L-cysteinethiol-glycolic acid (QD 4) and mercapto-propanoic acid-thiol-glycolic (QD 5). Dual-capped CdTe QDs were prepared using a one pot synthetic method. Cadmium acetate and sodium tellurite were respectively used as cadmium and tellurium precursors. Photo-physical properties of the synthesized QDs were examined using UV-Vis and photoluminescence spectroscopy while structural characterization was performed by means of transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy.
- Full Text:
- Date Issued: 2020
- Authors: Daramola, Olamide A , Noundou, Xavier S , Nkanga, Christian I , Tseki, Potlaki F , Krause, Rui W M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/156364 , vital:39983 , https://doi.org/10.1007/s10895-020-02526-x
- Description: We herein report five different types of thiol dual capped cadmium tellurite quantum dots (CdTe QDs) namely glutathionemercapto-propanoic acid (QD 1), glutathione-thiolglycolic acid (QD 2), L-cysteine-mercapto-propanoic acid (QD 3), L-cysteinethiol-glycolic acid (QD 4) and mercapto-propanoic acid-thiol-glycolic (QD 5). Dual-capped CdTe QDs were prepared using a one pot synthetic method. Cadmium acetate and sodium tellurite were respectively used as cadmium and tellurium precursors. Photo-physical properties of the synthesized QDs were examined using UV-Vis and photoluminescence spectroscopy while structural characterization was performed by means of transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy.
- Full Text:
- Date Issued: 2020
Co-encapsulation of rifampicin and isoniazid in crude soybean lecithin liposomes
- Nkanga, Christian I, Noundou, Xavier S, Walker, Roderick B, Krause, Rui W M
- Authors: Nkanga, Christian I , Noundou, Xavier S , Walker, Roderick B , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183536 , vital:44005 , xlink:href="https://doi.org/10.17159/0379-4350/2019/v72a11"
- Description: Despite the well-known anti-mycobacterial actions of isoniazid (INH) and rifampicin (RIF), the clinical success of tuberculosis (TB) therapy requires prolonged administration of multiple drugs in high doses, which often result in frequent adverse effects and low patient adherence. Although liposomes are promising candidates for controlled delivery of anti-TB drug, the high cost of synthetic and highly purified natural lipids currently used in liposomal technology might preclude the universal application of therapeutic liposomes. This work aimed at evaluating the potential of a cost-effective lipid material, crude soybean lecithin (CL), to co-encapsulate RIF and INH for liposomal dual delivery. RIF was encapsulated in CL-liposomes with/without cholesterol using film hydration method, after which INH was incorporated using a freeze–thawing technique. Dynamic light scattering, differential scanning calorimetry, X-ray diffraction and dialysis were used for liposome characterization. Liposomes containing CL alone (CLL) exhibited 90%encapsulation efficiency for RIF and 59%for INH. The mean size and surface charge of CLL were 1114nm and –63mV, respectively. In addition, CLL showed a controlled release profile for the co-encapsulated drugs. CLL would be promising vehicles for macrophage-targeting drug delivery. The present findings demonstrate the feasibility of using CL for preparation of combination products for liposomal delivery.
- Full Text:
- Date Issued: 2019
- Authors: Nkanga, Christian I , Noundou, Xavier S , Walker, Roderick B , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183536 , vital:44005 , xlink:href="https://doi.org/10.17159/0379-4350/2019/v72a11"
- Description: Despite the well-known anti-mycobacterial actions of isoniazid (INH) and rifampicin (RIF), the clinical success of tuberculosis (TB) therapy requires prolonged administration of multiple drugs in high doses, which often result in frequent adverse effects and low patient adherence. Although liposomes are promising candidates for controlled delivery of anti-TB drug, the high cost of synthetic and highly purified natural lipids currently used in liposomal technology might preclude the universal application of therapeutic liposomes. This work aimed at evaluating the potential of a cost-effective lipid material, crude soybean lecithin (CL), to co-encapsulate RIF and INH for liposomal dual delivery. RIF was encapsulated in CL-liposomes with/without cholesterol using film hydration method, after which INH was incorporated using a freeze–thawing technique. Dynamic light scattering, differential scanning calorimetry, X-ray diffraction and dialysis were used for liposome characterization. Liposomes containing CL alone (CLL) exhibited 90%encapsulation efficiency for RIF and 59%for INH. The mean size and surface charge of CLL were 1114nm and –63mV, respectively. In addition, CLL showed a controlled release profile for the co-encapsulated drugs. CLL would be promising vehicles for macrophage-targeting drug delivery. The present findings demonstrate the feasibility of using CL for preparation of combination products for liposomal delivery.
- Full Text:
- Date Issued: 2019
Encapsulation of isoniazid-conjugated phthalocyanine-In-cyclodextrin-in-liposomes using heating method
- Nkanga, Christian I, Krause, Rui W M
- Authors: Nkanga, Christian I , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193999 , vital:45414 , xlink:href="https://doi.org/10.1038/s41598-019-47991-y"
- Description: Liposomes are reputed colloidal vehicles that hold the promise for targeted delivery of anti-tubercular drugs (ATBDs) to alveolar macrophages that host Mycobacterium tuberculosis. However, the costly status of liposome technology, particularly due to the use of special manufacture equipment and expensive lipid materials, may preclude wider developments of therapeutic liposomes. In this study, we report efficient encapsulation of a complex system, consisting of isoniazid-hydrazone-phthalocyanine conjugate (Pc-INH) in gamma-cyclodextrin (γ-CD), in liposomes using crude soybean lecithin by means of a simple organic solvent-free method, heating method (HM). Inclusion complexation was performed in solution and solid-state, and evaluated using UV-Vis, magnetic circular dichroism, 1H NMR, diffusion ordered spectroscopy and FT-IR. The HM-liposomes afforded good encapsulation efficiency (71%) for such a large Pc-INH/γ-CD complex (PCD) system. The stability and properties of the PCD-HM-liposomes look encouraging; with particle size 240 nm and Zeta potential −57 mV that remained unchanged upon storage at 4 °C for 5 weeks. The release study performed in different pH media revealed controlled release profiles that went up to 100% at pH 4.4, from about 40% at pH 7.4. This makes PCD-liposomes a promising system for site-specific ATBD delivery, and a good example of simple liposomal encapsulation of large hydrophobic compounds.
- Full Text:
- Date Issued: 2019
- Authors: Nkanga, Christian I , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193999 , vital:45414 , xlink:href="https://doi.org/10.1038/s41598-019-47991-y"
- Description: Liposomes are reputed colloidal vehicles that hold the promise for targeted delivery of anti-tubercular drugs (ATBDs) to alveolar macrophages that host Mycobacterium tuberculosis. However, the costly status of liposome technology, particularly due to the use of special manufacture equipment and expensive lipid materials, may preclude wider developments of therapeutic liposomes. In this study, we report efficient encapsulation of a complex system, consisting of isoniazid-hydrazone-phthalocyanine conjugate (Pc-INH) in gamma-cyclodextrin (γ-CD), in liposomes using crude soybean lecithin by means of a simple organic solvent-free method, heating method (HM). Inclusion complexation was performed in solution and solid-state, and evaluated using UV-Vis, magnetic circular dichroism, 1H NMR, diffusion ordered spectroscopy and FT-IR. The HM-liposomes afforded good encapsulation efficiency (71%) for such a large Pc-INH/γ-CD complex (PCD) system. The stability and properties of the PCD-HM-liposomes look encouraging; with particle size 240 nm and Zeta potential −57 mV that remained unchanged upon storage at 4 °C for 5 weeks. The release study performed in different pH media revealed controlled release profiles that went up to 100% at pH 4.4, from about 40% at pH 7.4. This makes PCD-liposomes a promising system for site-specific ATBD delivery, and a good example of simple liposomal encapsulation of large hydrophobic compounds.
- Full Text:
- Date Issued: 2019
Conjugation of isoniazid to a zinc phthalocyanine via hydrazone linkage for pH-dependent liposomal controlled release
- Nkanga, Christian I, Krause, Rui W M
- Authors: Nkanga, Christian I , Krause, Rui W M
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194992 , vital:45517 , xlink:href="https://doi.org/10.1007/s13204-018-0776-y"
- Description: Tuberculosis (TB) remains the leading cause of mortality from infectious diseases. Extended TB treatment and frequent adverse effects, due to poor bioavailability of anti-tubercular drugs (ATBDs), represent the main rationales behind liposomal encapsulation for controlled delivery. Liposomes have been reported as potential vehicles for targeted delivery of ATBDs due to their rapid uptake by macrophages, which are known as the main host cells for TB causative agent (Mycobacterium tuberculosis). Additionally, the need for controlled release of ATBDs arises because leakage is part of the key liposome challenges for hydrophilic compounds like isoniazid (INH). In this study, INH was conjugated to a highly hydrophobic photosensitizer, zinc (II) phthalocyanine (PC), through hydrazone bonding. The obtained conjugate (PC–INH) was encapsulated in liposomes by film hydration method. PC–INH loaded liposomes (PILs) were characterized using dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectrometry and UV–Vis absorption spectrometry, which was used also for estimation of encapsulation efficiency (î). INH release was evaluated in different pH media using dialysis. Particle size, zeta potential and î of PILs were about 506 nm, − 55 mV and 72%, respectively. Over 12 h, PILs exhibited 22, 41, 97 and 100% of INH, respectively, released in pH 7.4, 6.4, 5.4 and 4.4 media. This pH-dependent behavior is attractive for site-specific delivery. These findings suggest the conjugation of chemotherapeutics to phthalocyanines using pH-labile linkages as a potential strategy for liposomal controlled release.
- Full Text:
- Date Issued: 2018
- Authors: Nkanga, Christian I , Krause, Rui W M
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194992 , vital:45517 , xlink:href="https://doi.org/10.1007/s13204-018-0776-y"
- Description: Tuberculosis (TB) remains the leading cause of mortality from infectious diseases. Extended TB treatment and frequent adverse effects, due to poor bioavailability of anti-tubercular drugs (ATBDs), represent the main rationales behind liposomal encapsulation for controlled delivery. Liposomes have been reported as potential vehicles for targeted delivery of ATBDs due to their rapid uptake by macrophages, which are known as the main host cells for TB causative agent (Mycobacterium tuberculosis). Additionally, the need for controlled release of ATBDs arises because leakage is part of the key liposome challenges for hydrophilic compounds like isoniazid (INH). In this study, INH was conjugated to a highly hydrophobic photosensitizer, zinc (II) phthalocyanine (PC), through hydrazone bonding. The obtained conjugate (PC–INH) was encapsulated in liposomes by film hydration method. PC–INH loaded liposomes (PILs) were characterized using dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectrometry and UV–Vis absorption spectrometry, which was used also for estimation of encapsulation efficiency (î). INH release was evaluated in different pH media using dialysis. Particle size, zeta potential and î of PILs were about 506 nm, − 55 mV and 72%, respectively. Over 12 h, PILs exhibited 22, 41, 97 and 100% of INH, respectively, released in pH 7.4, 6.4, 5.4 and 4.4 media. This pH-dependent behavior is attractive for site-specific delivery. These findings suggest the conjugation of chemotherapeutics to phthalocyanines using pH-labile linkages as a potential strategy for liposomal controlled release.
- Full Text:
- Date Issued: 2018
pH-Dependent release of isoniazid from isonicotinic acid (4-hydroxy-benzylidene)-hydrazide loaded liposomes
- Nkanga, Christian I, Tor-Anyiin, Terrumun A, Igoli, John O, Noundou, Xavier S, Krause, Rui W M
- Authors: Nkanga, Christian I , Tor-Anyiin, Terrumun A , Igoli, John O , Noundou, Xavier S , Krause, Rui W M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/126427 , vital:35884 , https://doi.org/10.9734/AJOCS/2017/37147
- Description: Liposomes are considered as potential vehicles for the delivery of anti-tuberculosis drugs (ATBD) due to their rapid uptake by alveolar macrophages, where the mycobacterium often resides. This may provide macrophage-targeting effects that would be key to site specific ATBD delivery using pH-sensitive liposomes, considering the pH-gradient found in the phagocytotic pathway. In this study, isoniazid (INH) was conjugated to 4-hydroxy-benzaldehyde via a hydrazone bond to yield isonicotinic acid (4-hydroxy-benzylidene)-hydrazide (INH-HB). This conjugate was encapsulated in crude soybean lecithin liposomes using film hydration method. INH-HB loaded liposomes (IHL) were characterized by means of dynamic light scattering, transmission electron microscopy, differential scanning calorimetry and X-ray diffraction. The release of INH from IHL was evaluated in media of different pH using a dialysis method. The particle size, Zeta Potential and encapsulation efficiency of IHL were about 945 nm, −62 mV and 89% respectively. In media of pH 7.4, 6.4, 5.4 and 4.4; the IHL exhibited respectively 22, 69, 83 and 100% of release over 12 h. In addition to possible targeted delivery, this pH-dependent release behavior may be suitable for minimizing the loss of INH by leakage from liposomes. The characteristics of IHL are promising for potential site-specific delivery of ATBD.
- Full Text:
- Date Issued: 2018
- Authors: Nkanga, Christian I , Tor-Anyiin, Terrumun A , Igoli, John O , Noundou, Xavier S , Krause, Rui W M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/126427 , vital:35884 , https://doi.org/10.9734/AJOCS/2017/37147
- Description: Liposomes are considered as potential vehicles for the delivery of anti-tuberculosis drugs (ATBD) due to their rapid uptake by alveolar macrophages, where the mycobacterium often resides. This may provide macrophage-targeting effects that would be key to site specific ATBD delivery using pH-sensitive liposomes, considering the pH-gradient found in the phagocytotic pathway. In this study, isoniazid (INH) was conjugated to 4-hydroxy-benzaldehyde via a hydrazone bond to yield isonicotinic acid (4-hydroxy-benzylidene)-hydrazide (INH-HB). This conjugate was encapsulated in crude soybean lecithin liposomes using film hydration method. INH-HB loaded liposomes (IHL) were characterized by means of dynamic light scattering, transmission electron microscopy, differential scanning calorimetry and X-ray diffraction. The release of INH from IHL was evaluated in media of different pH using a dialysis method. The particle size, Zeta Potential and encapsulation efficiency of IHL were about 945 nm, −62 mV and 89% respectively. In media of pH 7.4, 6.4, 5.4 and 4.4; the IHL exhibited respectively 22, 69, 83 and 100% of release over 12 h. In addition to possible targeted delivery, this pH-dependent release behavior may be suitable for minimizing the loss of INH by leakage from liposomes. The characteristics of IHL are promising for potential site-specific delivery of ATBD.
- Full Text:
- Date Issued: 2018
Preparation and characterization of isoniazid-loaded crude soybean lecithin liposomes
- Nkanga, Christian I, Isaacs, Michelle, Noundou, Xavier S, Krause, Rui W M, Walker, Roderick B
- Authors: Nkanga, Christian I , Isaacs, Michelle , Noundou, Xavier S , Krause, Rui W M , Walker, Roderick B
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125654 , vital:35804 , https://doi.org/10.1016/j.ijpharm.2017.04.074
- Description: Unexpected substituent-dependent regioselectivty challenges in the synthesis of C-benzylated (N-arylcarbamoyl)phosphonate esters have been resolved. The C-benzylated N-furfurylcarbamoyl derivative showed low micromolar PfLDH inhibition, while one of the C-benzylated N-arylcarbamoyl analogues was active against Nagana Trypanosoma brucei parasites which are responsible for African trypanosomiasis in cattle.
- Full Text:
- Date Issued: 2017
- Authors: Nkanga, Christian I , Isaacs, Michelle , Noundou, Xavier S , Krause, Rui W M , Walker, Roderick B
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125654 , vital:35804 , https://doi.org/10.1016/j.ijpharm.2017.04.074
- Description: Unexpected substituent-dependent regioselectivty challenges in the synthesis of C-benzylated (N-arylcarbamoyl)phosphonate esters have been resolved. The C-benzylated N-furfurylcarbamoyl derivative showed low micromolar PfLDH inhibition, while one of the C-benzylated N-arylcarbamoyl analogues was active against Nagana Trypanosoma brucei parasites which are responsible for African trypanosomiasis in cattle.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »