Characterization of Trypanosoma brucei Sti1 and its interactions with Trypanosoma brucei Hsp83 and human Hsp90
- Authors: Jamabo, Miebaka
- Date: 2023-03-31
- Subjects: Trypanosoma brucei , Heat shock proteins , HSP90 , HSP83 , Molecular chaperones
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/422629 , vital:71963 , DOI 10.21504/10962/422629
- Description: Neglected tropical diseases continue to pose global concern due to their impact on health and socio-economic status of developing countries in sub-Saharan Africa. African trypanosomiasis is one of the neglected tropical diseases caused by the kinetoplastid flagellate parasite Trypanosoma brucei (T. brucei). The disease is fatal if untreated and the toolbox to combat the disease has been plagued with many difficulties such as drug resistance, toxic chemotherapeutics, and cumbersome drug delivery processes. In recent years, the disease has received attention from organizations such as the Drugs for Neglected Diseases initiative (DNDi) in partnership with WHO as well as academia and industry to provide alternatives to the existing drugs as part of a targeted approach to eliminate human African trypanosomiasis by 2030. The life cycle of the T. brucei parasite requires that it transitions between a cold-blooded vector (the tsetse fly) and a human host. To survive this extreme environmental change and maintain its infectious cycle, the parasite has evolved an arsenal of tools which include a strong immune evasion technique and a robust molecular chaperone system. Heat shock protein 90 (Hsp90) is one of the most abundant eukaryotic molecular chaperones that has been extensively studied in many organisms. It is indispensable for maintaining proteostasis in some organisms and its inhibition is currently being explored as a drug target for cancer and other parasitic diseases. In T. brucei, cytosolic Hsp90 is specifically referred to as Hsp83 due to variations in the sizes amongst different orthologues. Hsp90 is present in high levels in all stages of the T. brucei cell cycle both constitutively and on exposure to stress. To function in the cell, Hsp90 is dependent on co-chaperones, one of which can be found in most organisms, namely, the stress-inducible protein 1 (Sti1). The Hsp90-Sti1 interaction was shown to be crucial for growth in the intracellular kinetoplastid parasite, Leishmania donovani. However, this partnership has not been explored in the extracellular parasite T. brucei. To analyse the interaction of Hsp90 with Sti1 in T. brucei, this study combined in silico, in vitro and in vivo tools. In silico analyses of the Hsp90 complement in T. brucei revealed the presence of twelve putative Hsp90 genes, ten of which code for the cytosolic protein and are arranged in tandem in a head to tail fashion on the same chromosome. One gene each was found for the mitochondrial and ER paralogues of Hsp90, similar to all other species analysed. Eight putative co-chaperones specific to T. brucei were also discovered: six tetratricopeptide repeat domain (TPR) containing co-chaperones and two non-TPR containing co-chaperones. Structural and evolutionary analysis also confirmed that the domains were conserved across the species analysed. T. brucei Sti1 (TbSti1), T. brucei cytosolic Hsp90 (TbHsp83) and human cytosolic Hsp90 (hHsp90) were heterologously overproduced in E. coli and purified using nickel affinity chromatography. With specific antibodies, the expression and localization of the proteins were confirmed. TbSti1 showed strong affinity to the Hsp90s in the nanomolar range, with higher affinity for hHsp90 compared to TbHsp83. TbHsp83 and hHsp90 showed typical chaperone properties by suppressing the aggregation of thermolabile substrate MDH at equimolar concentrations and both chaperones had potent ATP hydrolysis activity. TbSti1, on the other hand, showed no MDH suppression activity and did not affect the ATP hydrolysis activity of TbHsp83 or hHsp90. Ex-vivo experiments using HeLa CRISPR Hop knockout (KO) human cell lines transfected with pcDNA3.1(+)HA-TbSti1 revealed TbSti1 also localized to the cytoplasm. The transfected cells showed a distinct fibroblast-like morphology which was different from the circular morphology seen in the Hop KO untransfected and wild type untransfected cells. Finally, co-immunoprecipitation studies revealed that TbSti1 co-immunoprecipitated with hHsp90. These results show the first characterization of the TbHsp83-TbSti1 partnership in T. brucei. The strong association between both proteins suggests a functional role for this partnership in T. brucei and could provide an updated context for understanding Trypanosome brucei biology. , Thesis (PhD) -- Faculty of Science, Biotechnology and Innovation Centre, 2023
- Full Text:
- Date Issued: 2023-03-31
A Comparison of Mitochondrial Heat Shock Protein 70 and Hsp70 Escort Protein 1 Orthologues from Trypanosoma brucei and Homo sapiens
- Authors: Hand, Francis Bryan
- Date: 2023-03-29
- Subjects: Trypanosoma brucei , Heat shock proteins , Molecular chaperones , Transport protein , AlphaFold , Mitochondrial heat shock protein
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/422281 , vital:71927
- Description: The causative agent of African trypanosomiasis, Trypanosoma brucei (T. brucei), has an expanded retinue of specialized heat shock proteins, which have been identified as crucial to the progression of the disease. These play a central role in disease progression and transmission through their involvement in cell-cycle pathways which bring about cell-cycle arrest and differentiation. Hsp70 proteins are essential for the maintenance of proteostasis in the cell. Mitochondrial Hsp70 (mtHsp70) is a highly conserved molecular chaperone required for both the translocation of nuclear encoded proteins across the two mitochondrial membranes and the subsequent folding of proteins in the matrix. The T. brucei genome encodes three copies of mtHsp70 which are 100% identical. MtHsp70 self-aggregates, a property unique to this isoform, and an Hsp70 escort protein (Hep1) is required to maintain the molecular chaperone in a soluble, functional state. This study aimed to compare the solubilizing interaction of Hep1 from T. brucei and Homo sapiens (H. sapien). The recently introduced Alphafold program was used to analyze the structures of mtHsp70 and Hep1 proteins and allowed observations of structures unavailable to other modelling techniques. The GVFEV motif found in the ATPase domain of mtHsp70s interacted with the linker region, resulting in aggregation, the Alphafold models produced indicated that the replacement of the lysine (K) residue within the KTFEV motif of DnaK (prokaryotic Hsp70) with Glycine (G), may abrogate bond formation between the motif and a region between lobe I and II of the ATPase domain. This may facilitate the aggregation reaction of mtHsp70 orthologues and provides a residue of interest for future studies. Both TbHep1 and HsHep1 reduced the thermal aggregation of TbmtHsp70 and mortalin (H. sapien mtHsp70) respectively, however, TbHep1 was ~ 15 % less effective than HsHep1 at higher concentrations (4 uM). TbHep1 itself appeared to be aggregation-prone when under conditions of thermal stress, Alphafold models suggest this may be due to an N-terminal α- helical structure not present in HsHep1. These results indicate that TbHep1 is functionally similar to HsHep1, however, the orthologue may operate in a unique manner which requires further investigation. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2023
- Full Text:
- Date Issued: 2023-03-29
In Silico analysis of Spermidine, Spermine and Putrescine interaction with selected heat shock proteins from Plasmodium falciparum 3D7 towards malaria drug development
- Authors: Godlo, Sesethu
- Date: 2022
- Subjects: Heat shock proteins , Malaria vaccine , Plasmodium falciparum
- Language: English
- Type: Master'stheses , text
- Identifier: http://hdl.handle.net/10353/27709 , vital:69395
- Description: Malaria is a mosquito-borne disease that affects around half of the world's population. It is one of the most common parasite infections that endangers human life. One of the most serious issues in malaria therapy is the emergence and spread of antimalarial drug-resistant Plasmodium parasites. This is due to the Plasmodium parasite's constant evolution and development of new methods of surviving medication toxicity. Studies of antimalarial drug development have been focused on polyamine biosynthesis by targeting precursors such as ornithine decarboxylase, adenosylmethionine decarboxylase, and spermidine synthase and protein-protein interactions between Plasmodium falciparum chaperones spotting out Hsp90, Hsp70, and Hsp40 as potential targets with little attention being paid to the interaction between polyamines and molecular chaperones. Therefore, this study seeks to identify interactions between polyamines and molecular chaperones present in the malarial parasite Plasmodium falciparum 3D7. The identification of these interactions might lead to the design of effective drugs to treat and eliminate malaria. Using computational analysis, this study aims to find interactions between polyamines and molecular chaperones found in the malarial parasite Plasmodium falciparum 3D7. The sequences of the selected heat proteins retrieved, and the 3D structures predicted and validated. These structures were docked with polyamines retrieved from PubChem and MD simulations on the docked interactions were performed. Docking revealed common amino acid residues with hydrogen bonds and salt bridges between all receptors and ligands, with glutamine and aspartic acid standing out. MD simulations revealed that when HSP20 and HSP40 transport the ligands, they pop up or are released too quickly. However, HSP60, HSP70, and HSP90 provide optimism since the ligands remain attached to the proteins for a specific amount of time. To further understand and confirm these interactions wet laboratory studies may be carried out in future. , Thesis (MSci) -- Faculty of Science and Agriculture, 2022
- Full Text:
- Date Issued: 2022
Activity of diverse chalcones against several targets: statistical analysis of a high-throughput virtual screen of a custom chalcone library
- Authors: Sarron, Arthur F D
- Date: 2020
- Subjects: Acetophenone , Benzaldehyde , Ketones , Pyruvate kinase , Drug development , Aromatic compounds , Heat shock proteins
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/116028 , vital:34291
- Description: Chalcone family molecules are well known to have therapeutic proprieties (anti-inflammatory, anti-microbial or anti-cancer, etc). However the mechanism of action in some cases is not well known. A virtual library of this family of compounds was constructed using custom scripts, based on the aldol condensation, and this library was modified further to analogues by expansion of the α,β-unsaturated ketone linker. Acetophenone and benzaldehyde derivatives which are available and purchasable were used as a base to design the chalcone virtual library. 8063 chalcones were constructed and geometrically optimized with Gaussian 09. Their physicochemical characteristics linked to the Lipinski rules were analyzed with Knime and CDK. The entire library was after docked against several targets including HIV-1 integrase, MRSA pyruvate kinase, HSP90, COX-1, COX-2, ALR2, MAOA, MAOB, acetylcholinesterase, butyrylcholinesterase and PLA2. With the exception of MAOA, which does not have a crystal structure ligand, all dockings were validated by redocking the original ligand provided by the literature. These targets are known in the literature to be inhibited by chalcone-derivatives. However, specificity of the particular known chalcone inhibitors to the particular targets is not known. To this end the performance of the generated chalcone library against the list of targets was of interest. The binding energy of ligand-protein complexes was generally good across the library. Statistical analysis including principal component analysis and hierarchical clustering analysis were made in order to investigate for any physical/chemical characteristics which might explain what chalcone features affect the binding energy of the ligand-protein complexes. The spherical polar coordinates defining the orientation of the binding poses were also calculated and used in the statistical analysis. The statistical analysis has allowed us to hypothesize the importance of these radial distances and the polar angles of key atoms in the chalcones in binding to the pyruvate kinase crystal structure. This was validated by the docking of another small library of compound models in which the α,β-unsaturated ketone chain of the chalcone was replaced by incrementally longer conjugated chains. Further studies on the chalcones themselves reveal rotameric systems in both cis and trans-configurations (which may impact binding), and also studied was the effect of Topliss-based modification and its impact of binding to HSP90. Molecular dynamics confirmed good binding of identified chalcone hits.
- Full Text:
- Date Issued: 2020
A dynamics based analysis of allosteric modulation in heat shock proteins
- Authors: Penkler, David Lawrence
- Date: 2019
- Subjects: Heat shock proteins , Molecular chaperones , Allosteric regulation , Homeostasis , Protein kinases , Transcription factors , Adenosine triphosphatase , Cancer -- Chemotherapy , Molecular dynamics , High throughput screening (Drug development)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/115948 , vital:34273
- Description: The 70 kDa and 90 kDa heat shock proteins (Hsp70 and Hsp90) are molecular chaperones that play central roles in maintaining cellular homeostasis in all organisms of life with the exception of archaea. In addition to their general chaperone function in protein quality control, Hsp70 and Hsp90 cooperate in the regulation and activity of some 200 known natively folded protein clients which include protein kinases, transcription factors and receptors, many of which are implicated as key regulators of essential signal transduction pathways. Both chaperones are considered to be large multi-domain proteins that rely on ATPase activity and co-chaperone interactions to regulate their conformational cycles for peptide binding and release. The unique positioning of Hsp90 at the crossroads of several fundamental cellular pathways coupled with its known association with diverse oncogenic peptide clients has brought the molecular chaperone under increasing interest as a potential anti-cancer target that is crucially implicated with all eight hallmarks of the disease. Current orthosteric drug discovery efforts aimed at the inhibition of the ATPase domain of Hsp90 have been limited due to high levels of associated toxicity. In an effort to circumnavigate this, the combined focus of research efforts is shifting toward alternative approaches such as interference with co-chaperone binding and the allosteric inhibition/activation of the molecular chaperone. The overriding aim of this thesis was to demonstrate how the computational technique of Perturbation response scanning (PRS) coupled with all-atom molecular dynamics simulations (MD) and dynamic residue interaction network (DRN) analysis can be used as a viable strategy to efficiently scan and accurately identify allosteric control element capable of modulating the functional dynamics of a protein. In pursuit of this goal, this thesis also contributes to the current understanding of the nucleotide dependent allosteric mechanisms at play in cellular functionality of both Hsp70 and Hsp90. All-atom MD simulations of E. coli DnaK provided evidence of nucleotide driven modulation of conformational dynamics in both the catalytically active and inactive states. PRS analysis employed on these trajectories demonstrated sensitivity toward bound nucleotide and peptide substrate, and provided evidence of a putative allosterically active intermediate state between the ATPase active and inactive conformational states. Simultaneous binding of ATP and peptide substrate was found to allosterically prime the chaperone for interstate conversion regardless of the transition direction. Detailed analysis of these allosterically primed states revealed select residue sites capable of selecting a coordinate shift towards the opposite conformational state. In an effort to validate these results, the predicted allosteric hot spot sites were cross-validated with known experimental works and found to overlap with functional sites implicated in allosteric signal propagation and ATPase activation in Hsp70. This study presented for the first time, the application of PRS as a suitable diagnostic tool for the elucidation and quantification of the allosteric potential of select residues to effect functionally relevant global conformational rearrangements. The PRS methodology described in this study was packaged within the Python programming environment in the MD-TASK software suite for command-line ease of use and made freely available. Homology modelling techniques were used to address the lack of experimental structural data for the human cytosolic isoform of Hsp90 and for the first time provided accurate full-length structural models of human Hsp90α in fully-closed and partially-open conformations. Long-range all-atom MD simulations of these structures revealed nucleotide driven modulation of conformational dynamics in Hsp90. Subsequent DRN and PRS analysis of these MD trajectories allowed for the quantification and elucidation of nucleotide driven allosteric modulation in the molecular chaperone. A detailed PRS analysis revealed allosteric inter-domain coupling between the extreme terminals of the chaperone in response to external force perturbations at either domain. Furthermore PRS also identified several individual residue sites that are capable of selecting conformational rearrangements towards functionally relevant states which may be considered to be putative allosteric target sites for future drug discovery efforts Molecular docking techniques were employed to investigate the modulation of conformational dynamics of human Hsp90α in response to ligand binding interactions at two identified allosteric sites at the C-terminal. High throughput screening of a small library of natural compounds indigenous to South Africa revealed three hit compounds at these sites: Cephalostatin 17, 20(29)-Lupene-3β isoferulate and 3'-Bromorubrolide F. All-atom MD simulations on these protein-ligand complexes coupled with DRN analysis and several advanced trajectory based analysis techniques provided evidence of selective allosteric modulation of Hsp90α conformational dynamics in response to the identity and location of the bound ligands. Ligands bound at the four-helix bundle presented as putative allosteric inhibitors of Hsp90α, driving conformational dynamics in favour of dimer opening and possibly dimer separation. Meanwhile, ligand interactions at an adjacent sub-pocket located near the interface between the middle and C-terminal domains demonstrated allosteric activation of the chaperone, modulating conformational dynamics in favour of the fully-closed catalytically active conformational state. Taken together, the data presented in this thesis contributes to the understanding of allosteric modulation of conformational dynamics in Hsp70 and Hsp90, and provides a suitable platform for future biochemical and drug discovery studies. Furthermore, the molecular docking and computational identification of allosteric compounds with suitable binding affinity for allosteric sites at the CTD of human Hsp90α provide for the first time “proof-of-principle” for the use of PRS in conjunction with MD simulations and DRN analysis as a suitable method for the rapid identification of allosteric sites in proteins that can be probed by small molecule interaction. The data presented in this section could pave the way for future allosteric drug discovery studies for the treatment of Hsp90 associated pathologies.
- Full Text:
- Date Issued: 2019
Investigating assay formats for screening malaria Hsp90-Hop interaction inhibitors
- Authors: Derry, Leigh-Anne Tracy Kim
- Date: 2019
- Subjects: Antimalarials , Heat shock proteins , Drug interactions , Drug resistance , Plasmodium falciparum , High throughput screening (Drug development) , Bioluminescence resonance energy transfer (BRET) , Fluorescence resonance energy transfer (FRET)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63345 , vital:28395
- Description: Although significant gains have been made in the combat against malaria in the last decade, the persistent threat of drug and insecticide resistance continues to motivate the search for new classes of antimalarial drug compounds and targets. Due to their predominance in cellular reactions, protein-protein interactions (P-PIs) are emerging as a promising general target class for therapeutic development. The P-PI which is the focus of this project is the interaction between the chaperone heat shock protein 90 (Hsp90) and its co-chaperone Hsp70/Hsp90 organising protein (Hop). Hop binds to Hsp70 and Hsp90 and facilitates the transfer of client proteins (proteins undergoing folding) from the former to the latter and also regulates nucleotide exchange on Hsp90. Due to its role in correcting protein misfolding during cell stress, Hsp90 is being pursued as a cancer drug target and compounds that inhibit its ATPase activity have entered clinical trials. However, it has been proposed that inhibiting the interaction between Hsp90 and Hop may be alternative approach for inhibiting Hsp90 function for cancer therapy. The malaria parasite Plasmodium falciparum experiences temperature fluctuations during vector-host transitions and febrile episodes and cell stress due to rapid growth and immune responses. Hence, it also depends on chaperones, including PfHsp90, to maintain protein functionality and pathogenesis, demonstrated inter alia by the sensitivity of parasites to Hsp90 inhibitors. In addition, PfHsp90 exists as a complex with the malarial Hop homologue, PfHop, in parasite lysates. Consequently, the purpose of this study was to explore P-PI assay formats that can confirm the interaction of PfHsp90 and PfHop and can be used to identify inhibitors of the interaction, preferably in a medium- to high-throughput screening mode. As a first approach, cell-based bioluminescence and fluorescence resonance energy transfer (BRET and FRET) assays were performed in HeLa cells. To facilitate this, expression plasmid constructs containing coding sequences of P. falciparum and mammalian Hsp90 and Hop and their interacting domains (Hsp90 C-domain and Hop TPR2A domain) fused to the BRET and FRET reporter proteins – yellow fluorescent protein (YFP), cyan fluorescent protein (CFP) and Renilla luciferase (Rluc) - were prepared and used for HeLa cell transient transfections. The FRET assay produced positive interaction signals for the full-length P. falciparum and mammalian Hsp90-Hop interactions. However, C-domain-TPR2A domain interactions were not detected, no interactions could be demonstrated with the BRET assay and western blotting experiments failed to detect expression of all the interaction partners in transiently transfected HeLa cells. Consequently, an alternative in vitro FRET assay format using recombinant proteins was investigated. Expression constructs for the P. falciparum and mammalian C-domains and TPR2A domains fused respectively to YFP and CFP were prepared and the corresponding fusion proteins expressed and purified from E. coli. No interaction was found with the mammalian interaction partners, but interaction of the P. falciparum C-domain and TPR2A domain was consistently detected with a robust Z’ factor value of 0.54. A peptide corresponding to the PfTPR2A domain sequence primarily responsible for Hsp90 binding (based on a human TPR2A peptide described by Horibe et al., 2011) was designed and showed dose-dependent inhibition of the interaction, with 53.7% inhibition at 100 μM. The components of the assay are limited to the purified recombinant proteins, requires minimal liquid steps and may thus be a useful primary screening format for identifying inhibitors of P. falciparum Hsp90-Hop interaction.
- Full Text:
- Date Issued: 2019
Targeting allosteric sites of Escherichia coli heat shock protein 70 for antibiotic development
- Authors: Okeke, Chiamaka Jessica
- Date: 2019
- Subjects: Heat shock proteins , Escherichia coli , Allosteric proteins , Antibiotics , Molecular chaperones , Ligands (Biochemistry) , Molecular dynamics , Principal components analysis , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/115998 , vital:34287
- Description: Hsp70s are members of the heat shock proteins family with a molecular weight of 70-kDa and are the most abundant group in bacterial and eukaryotic systems, hence the most extensively studied ones. These proteins are molecular chaperones that play a significant role in protein homeostasis by facilitating appropriate folding of proteins, preventing proteins from aggregating and misfolding. They are also involved in translocation of proteins into subcellular compartments and protection of cells against stress. Stress caused by environmental or biological factors affects the functionality of the cell. In response to these stressful conditions, up-regulation of Hsp70s ensures that the cells are protected by balancing out unfolded proteins giving them ample time to repair denatured proteins. Hsp70s is connected to numerous illnesses such as autoimmune and neurodegenerative diseases, bacterial infection, cancer, malaria, and obesity. The multi-functional nature of Hsp70s predisposes them as promising therapeutic targets. Hsp70s play vital roles in various cell developments, and survival pathways, therefore targeting this protein will provide a new avenue towards the discovery of active therapeutic agents for the treatment of a wide range of diseases. Allosteric sites of these proteins in its multi-conformational states have not been explored for inhibitory properties hence the aim of this study. This study aims at identifying allosteric sites that inhibit the ATPase and substrate binding activities using computational approaches. Using E. coli as a model organism, molecular docking for high throughput virtual screening was carried out using 623 compounds from the South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/) against identified allosteric sites. Ligands with the highest binding affinity (good binders) interacting with critical allosteric residues that are druggable were identified. Molecular dynamics (MD) simulation was also performed on the identified hits to assess for protein-inhibitor complex stability. Finally, principal component analysis (PCA) was performed to understand the structural dynamics of the ligand-free and ligand-bound structures during MD simulation.
- Full Text:
- Date Issued: 2019
A medicinal chemistry study in nitrogen containing heterocycles
- Authors: Lunga, Mayibongwe Junior
- Date: 2018
- Subjects: Indole , Tetrazoles , Antimalarials , Heat shock proteins , Plasmodium falciparum
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/63521 , vital:28430
- Description: Heterocyclic structures have found extensive utility in the field of medicinal chemistry, as prominent regions of pharmacophores resulting in numerous drug treatments for many diseases. Accordingly, in this project we explored the respective antimalarial and anticancer activity exhibited by compounds featuring nitrogen containing indole and tetrazole heterocycles respectively. This thesis therefore comprises of two distinct parts. Part 1. Following the development of resistance towards traditional antimalarial therapy such as chloroquine and emerging resistance towards artemisinin combination therapies, the WHO reported the urgent need for new, effective drugs and identification of new drug targets to combat the Plasmodium falciparum parasite. In 2015 the parasite was the cause of 429 000 deaths, the majority occurring in the sub-Saharan region of Africa. This highlights the failing effectiveness of vector control strategies, reiterating the need to develop alternative control and treatment strategies. In response to this need we wanted to expand and further describe the SAR of the indole based series, indolyl-3-ethanone-α- thioethers, previously synthesized in our laboratory. These compounds were found to exhibit antimalarial activity with compounds 2.26 and 2.27 exhibiting activity against P. falciparum 3D7 in the nanomolar range. Based on these compounds we synthesized compounds 3.21 and 3.24 – 3.32 following a three step reaction pathway. Our results in this study, indicate that compound 3.28, a pnitrothiophenol analogue of 2.27 was the most active of the compounds we synthesized and furthermore was superior in activity against Plasmodium compared to 2.27. This result indicated that the presence of p-NO2 is important in enhancing anti-plasmodial activity. Comparing compounds 3.25 and 3.26 with an oxygen on the ether bridge to compounds 3.29 and 3.30 with a sulfur, we observed an increase in hydrophilicity coupled to a decrease in anti-plasmodial activity in the compounds, thus, highlighting the importance of sulfur for enhanced activity. Furthermore, we investigated bioisosteric replacement of the 5-chloro substituent present in hit compounds 2.27 and 3.28, with an electron withdrawing nitrile (3.27) and electron donating methyl (3.29) and methoxy (3.31) substituents. These substituents decreased anti-plasmodial activity, confirming that a chlorine substituent is optimal for biological activity. This study furthered our understanding of the SAR of indolyl-3-ethanone-α- thioethers for the development of potent anti-plasmodial lead compounds. Part 2. Triple negative breast cancer (TNBC), which disproportionately affects women of sub-Saharan Africa, is unresponsive to hormone-based therapies. This emergence presents a population of patients devoid of effective drug treatment, signaling the urgent need to develop new effective therapies with novel drug targets. Therefore, we identified our target in TNBC cells as the protein-protein interaction between the co-chaperones HOP and HSP90. We reasoned that a disruption of this interaction would ultimately result in cancer cell death via the degradation of essential oncogenic client proteins. Following a fragment screening campaign, which identified several acid and tetrazole containing hits (4.56 – 4.58) which bound to HOP, with low anticancer activity, we sought to develop synthetic methodology to elaborate our fragment hits synthesizing tetrazole containing fragments to target TNBC cell lines. We therefore proceeded to synthesize a range of multi substituted fragments (4.59 – 4.63), utilizing a nitrile (4.66) to access tetrazoles via 1,3-cycloaddition and an acid by nitrile hydrolysis. We successfully synthesized the tetrazole and acid fragments which are currently undergoing characterization for activity against TNBC. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2018
- Full Text:
- Date Issued: 2018
Development and optimisation of a novel Plasmodium falciparum Hsp90-Hop interaction assay
- Authors: Wambua, Lynn
- Date: 2018
- Subjects: Plasmodium falciparum , Molecular chaperones , Heat shock proteins , Protein-protein interactions , Antimalarials
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62626 , vital:28216
- Description: Protein-protein interactions are involved in a range of disease processes and thus have become the focus of many drug discovery programs. Widespread drug resistance to all currently used antimalarial drugs drives the search for alternative drug targets with novel mechanisms of action that offer new therapeutic options. Molecular chaperones such as heat shock proteins facilitate protein folding, play a role in protein trafficking and prevent protein misfolding in cells under stress. Heat shock protein 90 (Hsp90) is a well-studied chaperone that has been the focus of cancer drug development with moderate success. In Plasmodium falciparum (P. falciparum), heat shock proteins are thought to play a vital role in parasite survival of the physiologically diverse habitats of the parasite lifecycle and because Hsp90 is prominently expressed in P. falciparum, the chaperone is considered a potentially ideal drug target. Hsp90 function in cells is regulated by interactions with co-chaperones, which includes Heat shock protein 70-Heat shock protein 90 organising protein (Hop). As opposed to directly inhibiting Hsp90 activity, targeting Hsp90 interaction with Hop has recently been suggested as an alternative method of Hsp90 inhibition that has not been explored in P. falciparum. The aim of this research project was to demonstrate PfHsp90 and PfHop robustly interact in vitro and to facilitate high-throughput screening of PfHsp90-PfHop inhibitors by developing and optimising a novel plate capture Hsp90-Hop interaction assay. To establish the assay, the respective domains of the proteins that mediate Hsp90-Hop interaction were used (Hsp90 C- terminal domain and Hop TPR2A domain). The human Hsp90 C-terminal domain and glutathione-S-transferase (GST) coding sequences were cloned into pET-28a(+) and murine and P. falciparum TPR2A sequences into pGEX-4T-1 plasmids to enable expression of histidine-tagged and GST fusion proteins, respectively, in Escherichia coli. The P. falciparum Hsp90 C-terminal domain sequence cloned into pET-28a(+) was supplied by GenScript. The constructs were transformed into T7 Express lysYcompetent E. coli cells and subsequent small- scale expression studies showed the recombinant proteins were expressed in a soluble form allowing for subsequent protein purification. Purification of the recombinant proteins was achieved using nickel-NTA and glutathione affinity chromatography for the His-tagged (Hsp90 C-terminal domains and GST) and GST fusion proteins (TPR2A domains), respectively. The purified proteins were used to establish and optimise mammalian and P. falciparum Hsp90- Hop interaction assays on nickel-coated plates by immobilising the His-tagged C-terminal domains on the plates and detecting the binding of the GST-TPR2A domains using a colorimetric GST enzyme assay. Z’-factor values above 0.5 were observed for both assays indicating good separation between the protein interaction signals and negative control background signals, although relatively high background signals were observed for the mammalian interaction due to non-specific binding of murine TPR2A to the plate. Designed human and P. falciparum TPR peptides were observed to be effective inhibitors of the mammalian and P. falciparum interactions, demonstrating the assay’s ability to respond to inhibitor compounds. Comparison of assay performance using GST assay kit reagents and lab- prepared reagents showed the assay was more efficient using lab-prepared reagents, however, lower GST signals were observed when comparing assay performance using a custom prepared Ni-NTA plate to a purchased Ni-NTA plate. The Hsp90-Hop interaction assays were also performed using an alternative assay format in which the GST-TPR2A fusion proteins were immobilised on glutathione-coated plates and binding of the His-tagged C-terminal domains detected with a nickel-horseradish peroxidase (HRP) conjugate and a colorimetric HRP substrate. The assay showed higher interaction signals for the P. falciparum proteins but comparatively low signals for the mammalian proteins. Z’-factor values for the assay were above 0.8 for both protein sets, suggesting this assay format is superior to the GST assay. However, further optimisation of this assay format is required. This study demonstrated direct binding of PfHsp90-PfHop in vitro and established a novel and robust PfHsp90-PfHop interaction assay format that can be used in future screening campaigns.
- Full Text:
- Date Issued: 2018
Synthesis, characterisation and evaluation of ferrocene-containing Novobiocin analogues for anticancer and antiplasmodial activity through inhibition of Hsp90
- Authors: Mbaba, Mziyanda
- Date: 2017
- Subjects: Antibiotics Synthesis , Ferrocene , Heat shock proteins , Antimalarials , Cancer Chemotherapy
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/65111 , vital:28690
- Description: Novobiocin (Nb) is a coumarin type antibiotic isolated from the bacterium species of Streptomyces and possesses modest anticancer and antimalarial activities. Nb and analogues have been extensively explored as potential anticancer agents through inhibition of the C- terminal domain of heat shock protein 90 (Hsp90), which plays a pivotal role in the proteinfolding machinery of cells. There has been little effort in the exploration of Nb and derivatives for antimalarial activity. Incorporation of organometallic units, such as ferrocene (Fc), into bioactive chemical scaffolds remains an attractive approach for developing new therapeutic agents for treatment of several ailments. The current study sought to investigate the anticancer and antiplasmodial effects of incorporating ferrocene (Fc) into Nb scaffold presumably through inhibition of Hsp90. The ferrocenyl Nb analogues containing simplified structural motifs such as phenyl, benzyl, and piperidine were synthesized in six to nine steps employing conventional synthetic organic protocols adapted from literature, and the compounds were accessed in reasonable yields. For comparison purposes, a selection of organic Nb analogues were also included in the study. The target compounds were characterized by spectroscopic techniques including 1-dimensional nuclear magnetic resonance (1D NMR) and high-resolution mass spectroscopy. The synthesized compounds were evaluated in vitro for potential anticancer and antiplasmodial activities using the breast cancer cell line (HCC38) and chloroquine-sensitive strain (3D7) of the malaria parasite, Plasmodium falciparum. The presence of the Fc unit was found to enhance both anticancer and antiplasmodial activities of the resultant ferrocenyl Nb compounds with IC50 values in the low to mid micromolar range. Hsp90 inhibitory studies of the ferrocenyl Nb analogues possessing superior activities (2.13a and 2.20c) were also conducted using different yeast strains expressing both human and malarial Hsp90 isoforms: hHsp90a/p and PfHsp90, respectively. The results of Hsp90 inhibitory studies suggested no direct correlation between the observed activities of the analogues and Hsp90 inhibition. However, since the conditions of the assay were not optimised due to time constrains of the project, these observed data remained to be confirmed. , Thesis (MSc) -- Faculty of Science, Chemistry, 2017
- Full Text:
- Date Issued: 2017
The Role of HOP in Emerin-Mediated Nuclear Structure
- Authors: Kituyi, Sarah Naulikha
- Date: 2017
- Subjects: Heat shock proteins , Nuclear structure , Nuclear membranes , Cancer Treatment , Molecular chaperones , Cytoskeleton , Cytoplasm
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/59230 , vital:27485 , DOI 10.21504/10962/59230
- Description: A vital component of the integral nuclear membrane is emerin, a Lamin Emerin and Man1 (LEM) domain protein whose concentration determines the levels of partner proteins that together constitute the structure of the nuclear envelope. Deficiencies in any of these proteins causes the failure of the structure and assembly and disassembly of the nuclear envelope, which disrupts chromosome segregation and nuclear compartmentalization that are both associated with disease. Emerin also localizes in the cytoplasm where it is implicated in the structure of the cytoskeleton via interaction with tubulin and actin and thus its deficiency may equally contribute to the collapse of the cytoskeleton. The Hsp70-Hsp90 organising protein (Hop) functions as a cochaperone for entry of client proteins into the Hsp90 folding cycle. Hop is upregulated in cancer and regulates a number of cell biology processes via interactions with proteins independently of Hsp90. In a previous study using global whole cell mass spectrometry, emerin was shown to be the most significantly down regulated protein in Hop depleted cell lysates. In this current study, it was postulated that emerin interacts with Hop, and this interaction regulates the stability, and level of emerin in the nucleus which impacts on the structure of the nuclear envelope. We used HEK293T cell lines stably expressing shRNA against Hop, emerin and a non-targeting control alongside the over expression of Hop in HEK293 cells to determine the effect of Hop levels on emerin expression and vice versa via Western blotting. The effect of Hop on the localization of emerin was assessed via subcellullar fractionation and confocal microscopy, while the impact on the structure of the nucleus was determined by transmission electron microscopy (TEM). We established that the depletion of Hop using shRNA and the over expression of Hop both result in the proteasomal and lysosomal degradation of emerin. Co-immunoprecipitation assays confirmed that Hop and emerin are in a common complex, which was not dependent on the presence of Hsp90. Loss of Hop or emerin led to a deformation of nuclear structure and a statistically significant decrease in nuclear size compared to control cells and was associated with an increase in the levels of nuclear protein, lamin A-C. Loss of emerin and Hop resulted in increased long term cell survival, but only after restriction of the nucleus when the cells had migrated across a transwell membrane. Taken together, the results obtained suggest that Hop acts as a scaffold for the stabilization of emerin and that the effects of Hop depletion on the structure of the nucleus and long term survival are mediated via the depletion of emerin. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2017
- Full Text:
- Date Issued: 2017
Investigating the role of Hsp90 and LRP1 in FN matrix dynamics
- Authors: Boël, Natasha Marie-Eraine
- Date: 2016
- Subjects: Extracellular matrix , Molecular chaperones , Heat shock proteins , Cancer , Fibronectins
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/2713 , vital:20319
- Description: Fibronectin (FN), a matrix protein responsible for regulating processes including migration and differentiation, is secreted as a soluble dimer which is assembled into an insoluble extracellular matrix. The dynamics of FN matrix assembly and degradation play a large role in cell migration and invasion contributing to the metastatic potential of cancer cells. Previous studies from our group have shown the direct binding of Hsp90 and FN in vitro and that inhibition of Hsp90 with novobiocin (NOV) caused internalisation of the FN matrix. However, the receptor mediating this internalisation is currently unknown. Low density lipoprotein 1 (LRP1) is a likely candidate as it is a ubiquitous receptor responsible for regulating internalisation of diverse ligands and is known to bind both Hsp90 and FN. We used wild type and knockout LRP1 cell lines to study the endocytosis of FN via this receptor. Here, we demonstrate that LRP1-deficient cells accumulated greatly increased levels of FN and were found to be less sensitive to pharmacological inhibition of Hsp90 by NOV. LRP1-expressing MEF-1 and Hs578T breast cancer cells experienced an increase in total FN in response to NOV, at concentrations below the EC50 value, followed by a dose-dependent loss of FN. We attributed greater FN levels to a loss of extracellular FN matrix coupled with increased internalisation of FN. Cell-surface biotinylation and DOC assays showed that loss of extracellular FN was specific to LRP1-expressing MEF-1 cells. Furthermore, we demonstrate that the loss of extracellular FN is not affected by changes in FN mRNA levels as determined by qRT-PCR, and that treatment with NOV resulted in the accelerated degradation of FN in the presence of cycloheximide. Immunoprecipitation studies reveal a putative complex exists between FN, Hsp90 and LRP1 in both cancer and non-cancer cells which is not perturbed by NOV. Western analyses revealed increased proteolytic processing of LRP1 in response to NOV which we proposed, based on literature, to modulate signalling pathways as a potential mechanism for regulating FN turnover. Moreover, using wound healing assays we identified increased migration to be one of the consequences associated with loss of extracellular FN by Hsp90 inhibition but only in cells containing LRP1. In summary, this study provides new insights into the Hsp90-LRP1 mediated loss of FN matrix and also reveals for the first time the functional consequence related to FN turnover by NOV was an increase in migration in LRP1-expressing cells.
- Full Text:
- Date Issued: 2016
Structural bioinformatics studies and tool development related to drug discovery
- Authors: Hatherley, Rowan
- Date: 2016
- Subjects: Structural bioinformatics , Drug development , Natural products -- Databases , Natural products -- Biotechnology , Sequence alignment (Bioinformatics) , Malaria -- Chemotherapy , Heat shock proteins , Plasmodium falciparum
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4164 , http://hdl.handle.net/10962/d1020021
- Description: This thesis is divided into two distinct sections which can be combined under the broad umbrella of structural bioinformatics studies related to drug discovery. The first section involves the establishment of an online South African natural products database. Natural products (NPs) are chemical entities synthesised in nature and are unrivalled in their structural complexity, chemical diversity, and biological specificity, which has long made them crucial to the drug discovery process. South Africa is rich in both plant and marine biodiversity and a great deal of research has gone into isolating compounds from organisms found in this country. However, there is no official database containing this information, making it difficult to access for research purposes. This information was extracted manually from literature to create a database of South African natural products. In order to make the information accessible to the general research community, a website, named “SANCDB”, was built to enable compounds to be quickly and easily searched for and downloaded in a number of different chemical formats. The content of the database was assessed and compared to other established natural product databases. Currently, SANCDB is the only database of natural products in Africa with an online interface. The second section of the thesis was aimed at performing structural characterisation of proteins with the potential to be targeted for antimalarial drug therapy. This looked specifically at 1) The interactions between an exported heat shock protein (Hsp) from Plasmodium falciparum (P. falciparum), PfHsp70-x and various host and exported parasite J proteins, as well as 2) The interface between PfHsp90 and the heat shock organising protein (PfHop). The PfHsp70-x:J protein study provided additional insight into how these two proteins potentially interact. Analysis of the PfHsp90:PfHop also provided a structural insight into the interaction interface between these two proteins and identified residues that could be targeted due to their contribution to the stability of the Hsp90:Hop binding complex and differences between parasite and human proteins. These studies inspired the development of a homology modelling tool, which can be used to assist researchers with homology modelling, while providing them with step-by-step control over the entire process. This thesis presents the establishment of a South African NP database and the development of a homology modelling tool, inspired by protein structural studies. When combined, these two applications have the potential to contribute greatly towards in silico drug discovery research.
- Full Text:
- Date Issued: 2016
Establishment of human OCT4 as a putative HSP90 client protein: a case for HSP90 chaperoning pluripotency
- Authors: Sterrenberg, Jason Neville
- Date: 2015
- Subjects: Induced pluripotent stem cells , Heat shock proteins , Stem cells , Transcription factors , Molecular chaperones
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/194010 , vital:45415 , 10.21504/10962/194010
- Description: The therapeutic potential of stem cells is already being harnessed in clinical trails. Of even greater therapeutic potential has been the discovery of mechanisms to reprogram differentiated cells into a pluripotent stem cell-like state known as induced pluripotent stem cells (iPSCs). Stem cell nature is governed and maintained by a hierarchy of transcription factors, the apex of which is OCT4. Although much research has elucidated the transcriptional regulation of OCT4, OCT4 regulated gene expression profiles and OCT4 transcriptional activation mechanisms in both stem cell biology and cellular reprogramming to iPSCs, the fundamental biochemistry surrounding the OCT4 transcription factor remains largely unknown. In order to analyze the biochemical relationship between HSP90 and human OCT4 we developed an exogenous active human OCT4 expression model with human OCT4 under transcriptional control of a constitutive promoter. We identified the direct interaction between HSP90 and human OCT4 despite the fact that the proteins predominantly display differential subcellular localizations. We show that HSP90 inhibition resulted in degradation of human OCT4 via the ubiquitin proteasome degradation pathway. As human OCT4 and HSP90 did not interact in the nucleus, we suggest that HSP90 functions in the cytoplasmic stabilization of human OCT4. Our analysis suggests HSP90 inhibition inhibits the transcriptional activity of human OCT4 dimers without affecting monomeric OCT4 activity. Additionally our data suggests that the HSP90 and human OCT4 complex is modulated by phosphorylation events either promoting or abrogating the interaction between HSP90 and human OCT4. Our data suggest that human OCT4 displays the characteristics describing HSP90 client proteins, therefore we identify human OCT4 as a putative HSP90 client protein. The regulation of the transcription factor OCT4 by HSP90 provides fundamental insights into the complex biochemistry of stem cell biology. This may also be suggestive that HSP90 not only regulates stem cell biology by maintaining routine cellular homeostasis but additionally through the direct regulation of pluripotency factors. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2015
- Full Text:
- Date Issued: 2015
In silico analysis of human Hsp90 for the identification of novel anti-cancer drug target sites and natural compound inhibitors
- Authors: Penkler, David Lawrence
- Date: 2015
- Subjects: Heat shock proteins , Cancer -- Treatment , Molecular chaperones , Homeostasis , Carcinogenesis , Chemotherapy , Ligand binding (Biochemistry) , Protein-protein interactions
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4162 , http://hdl.handle.net/10962/d1018938
- Description: The 90-KDa heat shock protein (Hsp90) is part of the molecular chaperone family, and as such it is involved in the regulation of protein homeostasis within cells. Specifically, Hsp90 aids in the folding of nascent proteins and re-folding of denatured proteins. It also plays an important role in the prevention of protein aggregation. Hsp90’s functionality is attributed to its several staged, multi-conformational ATPase cycle, in which associated client proteins are bound and released. Hsp90 is known to be associated with a wide array of client proteins, some of which are thought to be involved in multiple oncogenic processes. Indeed Hsp90 is known to be directly involved in perpetuating the stability and function of multiple mutated, chimeric and over-expressed signalling proteins that are known to promote the growth and survival of cancer cells. Hsp90 inhibitors are thus thought to be promising therapeutic agents for cancer treatment. A lack of a 3D structure of human Hsp90 however has restricted Hsp90 inhibitor development in large to in vivo investigations. This study, aims to investigate and calculate hypothetical homology models of the full human Hsp90 protein, and to probe these structural models for novel drug target sites using several in silico techniques. A multi-template homology modelling methodology was developed and in conjunction with protein-protein docking techniques, two functionally important human Hsp90 structural models were calculated; the nucleotide free “v-like” open and nucleotide bound closed conformations. Based on the conservation of ligand binding, virtual screening experiments conducted on both models using 316 natural compounds indigenous to South Africa, revealed three novel putative target sites. Two binding pockets in close association with important Hsp90-Hop interaction residues and a single binding pocket on the dimerization interface in the C-terminal domain. Targeted molecular docking experiments at these sites revealed two compounds (721395-11-5 and 264624-39-7) as putative inhibitors, both showing strong binding affinities for at least one of the three investigated target sites. Furthermore both compounds were found to only violate one Lipinski’s rules, suggesting their potential as candidates for further drug development. The combined work described here provides a putative platform for the development of next generation inhibitors of human Hsp90.
- Full Text:
- Date Issued: 2015
The role of Stress Inducible Protein 1 (STI1) in the regulation of actin dynamics
- Authors: Beckley, Samantha Joy
- Date: 2015
- Subjects: Heat shock proteins , Molecular chaperones , Actin , Microfilament proteins , Cell migration , Adenosine triphosphatase , Metastasis
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/193941 , vital:45409
- Description: Stress-inducible protein 1 (STI1) otherwise known as Hop (Hsp70/Hsp90 organising protein) is a highly conserved abundant co-chaperone of the Hsp70 and Hsp90 chaperones. STI1 acts as an adapter protein, where it regulates the transfer of protein substrates from Hsp70 to Hsp90 during the assembly of a number of chaperone-client protein complexes. The role of STI1 associating independently with non-chaperone proteins has become increasingly prominent. Recent data from colocalisation and co-sedimentation analyses in our laboratory suggested a direct interaction between STI1 and the cytoskeletal protein, actin. However, there was a lack of information on the motifs which mediated this interaction, as well as the exact role of STI1 in the regulation of cytoskeletal dynamics. Two putative actin binding motifs, DAYKKK (within the TPR2A domain) and a polyproline region (after the DP1 domain), were identified in mammalian STI1. Our data from in vitro interaction studies including surface plasmon resonance and high speed co-sedimentation assays suggested that both TPR1 and TPR2AB were required for the STI1-actin interaction, and peptides corresponding to either the DAYKKK or the polyproline motif, alone or in combination, could not block the STI1-actin interaction. Full length mSTI1 was shown to have ATPase activity and when combined with actin an increase in ATPase activity was seen. Ex vivo studies using STI1 knockdown shRNA HEK293T cells and non-targeting control shRNA HEK293T cells showed a change of F-actin morphology as well as reduction in levels of actin-binding proteins profilin, cofilin and tubulin in the STI1 knockdown cells. These data extend our understanding of the role of STI1 in regulating actin dynamics and may have implications for cell migration. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2015
- Full Text:
- Date Issued: 2015
Analysis of the interaction of Hsp90 with the extracellular matrix protein fibronectin (FN)
- Authors: Hunter, Morgan Campbell
- Date: 2014
- Subjects: Heat shock proteins , Fibronectins , Extracellular matrix proteins , Breast -- Cancer
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4170 , http://hdl.handle.net/10962/d1020960
- Description: Mounting evidence suggests that Hsp90 is present and functionally active in the extracellular space. The biological function of extracellular Hsp90 (eHsp90) remains relatively uncharacterized compared to that of intracellular Hsp90. eHsp90 has been shown to interact with a finite number of extracellular proteins, however, despite the identification of eHsp90 interacting proteins, the function of eHsp90 in these complexes is unknown. Several reports suggest a role for eHsp90α in cell migration and invasion. Reported targets for eHsp90 stimulated cell migration include MMPs, LRP-1, tyrosine kinase receptors and possible others unidentified. Limited studies report a role for eHsp90β. Recently, Hsp90α and Hsp90β were isolated in a complex containing fibronectin (FN) on the surface of MDA-MB-231 breast cancer cells. Herein, we report direct binding of Hsp90α and Hsp90β to FN using a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. SPR spectroscopy showed that Hsp90β bound the 70 kDa amino-terminal fragment of FN (FN70), but that binding of FN to Hsp90β was not limited to FN70. Confocal microscopy showed regions of colocalization of Hsp90 with extracellular FN matrix fibrils in Hs578T breast cancer cell lines. Treatment of Hs578T breast cancer cells with novobiocin (an Hsp90 inhibitor) and an LRP-1 blocking antibody resulted in a loss of FN matrix and FN endocytosis (novobiocin treated). Addition of exogenous Hsp90β was able to recover such effect after both treatments. FN was shown to colocalize with intracellular LRP-1 in novobiocin treated Hs578T cells. Immunoprecipitation of an LRP-1 containing complex showed the presence of Hsp90 and 70 and 120+ kDa FN fragments. Treatment of Hs578T cells with novobiocin increased the level of FN120+ bound in LRP-1 immunoprecipitate. Exogenous Hsp90β decreased the level of low and high molecular weight FN fragments in a complex with LRP-1, despite the fact that higher levels of lower molecular weight FN fragments were detected in this cell lysate compared to the other treatments. We report FN as a novel interacting protein of eHsp90. Taken together, we provide evidence for a direct role of eHsp90β in FN matrix remodeling. We suggest that Hsp90 plays a direct role in FN matrix dynamics through interaction with FN and LRP-1. The identification of FN as a novel interacting protein of eHsp90 suggests a role for Hsp90 in FN matrix remodeling, which is important for a number of fundamental cellular processes including cell migration and metastasis.
- Full Text:
- Date Issued: 2014
Characterization of the Hsp40 partner proteins of Plasmodium falciparum Hsp70
- Authors: Njunge, James Mwangi
- Date: 2014
- Subjects: Plasmodium falciparum , Heat shock proteins , Malaria -- Chemotherapy , Protein-protein interactions , Erythrocytes -- Biotechnology , Molecular chaperones , Host-parasite relationships , Mitochondria
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4117 , http://hdl.handle.net/10962/d1013186
- Description: Human malaria is an economically important disease caused by single-celled parasites of the Plasmodium genus whose biology displays great evolutionary adaptation to both its mammalian host and transmitting vectors. This thesis details the 70 kDa heat shock protein (Hsp70) and J protein chaperone complements in malaria parasites affecting humans, primates and rodents. Heat shock proteins comprise a family of evolutionary conserved and structurally related proteins that play a crucial role in maintaining the structural integrity of proteins during normal and stress conditions. They are considered future therapeutic targets in various cellular systems including Plasmodium falciparum. J proteins (Hsp40) canonically partner with Hsp70s during protein synthesis and folding, trafficking or targeting of proteins for degradation. However, in P. falciparum, these classes of proteins have also been implicated in aiding the active transport of parasite proteins to the erythrocyte cytosol following erythrocyte entry by the parasite. This host-parasite “cross-talk” results in tremendous modifications of the infected erythrocyte, imparting properties that allow it to adhere to the endothelium, preventing splenic clearance. The genome of P. falciparum encodes six Hsp70 homologues and a large number of J proteins that localize to the various intracellular compartments or are exported to the infected erythrocyte cytosol. Understanding the Hsp70-J protein interactions and/or partnerships is an essential step for drug target validation and illumination of parasite biology. A review of these chaperone complements across the Plasmodium species shows that P. falciparum possesses an expanded Hsp70-J protein complement compared to the rodent and primate infecting species. It further highlights how unique the P. falciparum chaperone complement is compared to the other Plasmodium species included in the analysis. In silico analysis showed that the genome of P. falciparum encodes approximately 49 J proteins, 19 of which contain a PEXEL motif that has been implicated in routing proteins to the infected erythrocyte. Most of these PEXEL containing J proteins are unique with no homologues in the human system and are considered as attractive drug targets. Very few of the predicted J proteins in P. falciparum have been experimentally characterized. To this end, cell biological and biochemical approaches were employed to characterize PFB0595w and PFD0462w (Pfj1) J proteins. The uniqueness of Pfj1 and the controversy in literature regarding its localization formed the basis for the experimental work. This is the first study showing that Pfj1 localizes to the mitochondrion in the intraerythrocytic stage of development of P. falciparum and has further proposed PfHsp70-3 as a potential Hsp70 partner. Indeed, attempts to heterologously express and purify Pfj1 for its characterization are described. It is also the first study that details the successful expression and purification of PfHsp70-3. Further, research findings have described for the first time the expression and localization of PFB0595w in the intraerythrocytic stages of P. falciparum development. Based on the cytosolic localization of both PFB0595w and PfHsp70-1, a chaperone – cochaperone partnership was proposed that formed the basis for the in vitro experiments. PFB0595w was shown for the first time to stimulate the ATPase activity of PfHsp70-1 pointing to a functional interaction. Preliminary surface plasmon spectroscopy analysis has revealed a potential interaction between PFB0595w and PfHsp70-1 but highlights the need for further related experiments to support the findings. Gel filtration analysis showed that PFB0595w exists as a dimer thereby confirming in silico predictions. Based on these observations, we conclude that PFB0595w may regulate the chaperone activity of PfHsp70-1 in the cytosol while Pfj1 may play a co-chaperoning role for PfHsp70-3 in the mitochondrion. Overall, this data is expected to increase the knowledge of the Hsp70-J protein partnerships in the erythrocytic stage of P. falciparum development, thereby enhancing the understanding of parasite biology.
- Full Text:
- Date Issued: 2014
Structural bioinformatics analysis of the Hsp40 and Hsp70 molecular chaperones from humans
- Authors: Adeyemi, Samson Adebowale
- Date: 2014
- Subjects: Structural bioinformatics , Molecular chaperones , Heat shock proteins , Protein-protein interactions , Biomolecules
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4171 , http://hdl.handle.net/10962/d1020962
- Description: HSP70 is one of the most important families of molecular chaperone that regulate the folding and transport of client proteins in an ATP dependent manner. The ATPase activity of HSP70 is stimulated through an interaction with its family of HSP40 co-chaperones. There is evidence to suggest that specific partnerships occur between the different HSP40 and HSP70 isoforms. While some of the residues involved in the interaction are known, many of the residues governing the specificity of HSP40-HSP70 partnerships are not precisely defined. It is not currently possible to predict which HSP40 and HSP70 isoforms will interact. We attempted to use bioinformatics to identify residues involved in the specificity of the interaction between the J domain from HSP40 and the ATPase domain from the HSP70 isoforms from humans. A total of 49 HSP40 and 13 HSP70 sequences from humans were retrieved and used for subsequent analyses. The HSP40 J domains and HSP70 ATPase domains were extracted using python scripts and classified according to the subcellular localization of the proteins using localization prediction programs. Motif analysis was carried out using the full length HSP40 proteins and Multiple Sequence Alignment (MSA) was performed to identify conserved residues that may contribute to the J domain – ATPase domain interactions. Phylogenetic inference of the proteins was also performed in order to study their evolutionary relationship. Homology models of the J domains and ATPase domains were generated. The corresponding models were docked using HADDOCK server in order to analyze possible putative interactions between the partner proteins using the Protein Interactions Calculator (PIC). The level of residue conservation was found to be higher in Type I and II HSP40 than in Type III J proteins. While highly conserved residues on helixes II and III could play critical roles in J domain interactions with corresponding HSP70s, conserved residues on helixes I and IV seemed to be significant in keeping the J domain in its right orientation for functional interactions with HSP70s. Our results also showed that helixes II and III formed the interaction interface for binding to HSP70 ATPase domain as well as the linker residues. Finally, data based docking procedures, such as applied in this study, could be an effective method to investigate protein-protein interactions complex of biomolecules.
- Full Text:
- Date Issued: 2014
The effects of extracellular and intracellular Hop on cell migration processes
- Authors: Contu, Lara
- Date: 2014
- Subjects: Heat shock proteins , Metastasis , Cancer Chemotherapy , Molecular chaperones , Cell migration
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/193961 , vital:45410
- Description: The Hsp70/Hsp90-organising protein (Hop) is a 60 kDa co-chaperone that acts as an adaptor molecule, facilitating the transfer of client proteins between the Hsp70 and Hsp90 chaperone systems. Hop functions both intracellularly and extracellularly and has been implicated in many processes involved in cancer progression, including cell migration and invasion. Little is known about the mechanisms or domains by which extracellular Hop functions. In addition, little is known about the effects of Hop on signalling molecules involved in cell migration and invasion through regulation of actin dynamics. It was hypothesised that both extracellular and intracellular pools of Hop would regulate distinct cell migration processes by activation of cell signalling pathways or direct interactions with signalling intermediates. HS578T cells were treated with recombinant full length and truncated murine Hop proteins (overexpressed and purified in this study) to determine the effects of extracellular Hop and the independent domains on cell migration processes. Additionally, RNA interference (RNAi) techniques were used to determine the effect of Hop knockdown on cell migration related signalling intermediates and cell morphologies. A short hairpin RNA (shRNA) system for the stable knockdown of Hop was developed and used for a number of these studies. Treatment of HS578T cells with the TPR2A2B and TPR1 domains of Hop resulted in a significant decrease in cell migration and caused changes in the actin cytoskeleton and extracellular matrix proteins, gelatin and fibronectin. RhoC immunoprecipitated in a common complex with Hop and Hsp90. Hop knockdown reduced levels of actin and total RhoC, as well as active RhoC. In addition, knockdown of Hop resulted in a reduced migratory phenotype. We interpreted these data to indicate that intracellular Hop played a role in cell migration through regulation of RhoC activity, either through a direct interaction between Hop and RhoC, or an indirect interaction of RhoC with the Hsp90 multichaperone heterocomplex. Taken together, the data suggested that extracellular and intracellular Hop played distinct roles in extracellular and intracellular processes that lead to actin dynamics and cell migration. Understanding the mechanistic role of Hop in these processes is essential as it would aid in assessing the viability of Hop as a potential drug target for the treatment of metastatic cancers. , Thesis (MSc) -- Faculty of Science, Biochemistry, Microbiology and Biotechnology, 2014
- Full Text:
- Date Issued: 2014